Chapter 7 Review Problem Solution

Caley Harris, Daniel Paz

May 2, 2017

Consider an elliptically polarized electromagnetic wave whose electric component is given by

$$
\begin{equation*}
\vec{E}(z, t)=\hat{x} E_{0} \sin [\omega(t-z / c)]+\hat{y} E_{0} \sin [\omega(t-z / c)-\pi / 4] \tag{1}
\end{equation*}
$$

where ω is the angular frequency and c is the speed of the wave.
(a) Find the magnetic component $\vec{B}(z, t)$ of the wave.

$$
\begin{equation*}
\vec{B}(z, t)=-\hat{x} E_{0} \sin [\omega(t-z)+\pi / 4]+\hat{y} E_{0} \sin [\omega(t-z)] \tag{2}
\end{equation*}
$$

(b) Calculate the energy density of the wave propagating in free space.

$$
\begin{equation*}
T_{00}=\frac{E_{0}^{2}}{4 \pi}\left[\sin ^{2}[\omega(t-z)]+\sin ^{2}[\omega(t-z)+\pi / 4]\right] \tag{3}
\end{equation*}
$$

(c) Find the speed with which the energy is propagating.

The energy travels through the waves which propagate with speed c in a vacuum.
(d) Find the minimum and maximum value of the Poynting vector.

$$
\begin{gather*}
\vec{S}=\frac{1}{4 \pi}[\vec{E} \times \vec{B}]=T_{00} \hat{z} \tag{4}\\
\omega(t-z)=\frac{3 \pi}{8} \rightarrow S=1.7 E_{0}^{2} \quad \text { Maximum } \tag{5}\\
\omega(t-z)=\frac{7 \pi}{8} \rightarrow S=0.29 E_{0}^{2} \quad \text { Minimum } \tag{6}
\end{gather*}
$$

