Practice Problem Solution - Chapter 5-Multipole Expansions

1. A uniformly charged cylinder of radius R, height h, and total charge Q is centered at the origin, with its symmetry axis along the \hat{z} axis and with $-h / 2 \leq z \leq h / 2$.
a. Obtain the first two non-zero terms in the multi-pole expansion for the electrostatic potential, $\Phi(r, \theta, \phi)$.
b. Obtain the first two non-zero terms in the multi-pole expansion for the electric field, $\mathbf{E}(r, \theta, \phi)$.

The expansion is of the form:

$$
\Phi(r, \theta, \phi)=\sum_{l m} \frac{4 \pi}{2 l+1} q_{l m} \frac{Y_{l m}}{r^{l+1}}
$$

where $q_{l m}$ are the multipole moments of the charge distribution $\rho=Q /\left(\pi R^{2} h\right)$.

$$
q_{l m}=\int r^{\prime l} \rho\left(\vec{r}^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) d^{3} r^{\prime}
$$

The lowest multipole moments are:

$$
\begin{gathered}
q_{00}=\frac{1}{\sqrt{4 \pi}} Q \\
q_{10}=-\frac{3}{4 \pi} p_{z} \\
q_{11}=-\frac{3}{8 \pi}\left(p_{x}-i p_{y}\right) \\
q_{20}=\sqrt{\frac{5}{16 \pi}} Q_{33} \\
q_{21}=-\sqrt{\frac{15}{72 \pi}}\left(Q_{13}-i Q_{23}\right) \\
q_{22}=\sqrt{\frac{15}{288 \pi}}\left(Q_{11}-2 i Q_{12}-Q_{22}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
p_{i}=\int \rho(\vec{r}) d^{3} r \\
Q_{i j}=\int \rho(\vec{r})\left(3 r_{i} r_{j}-r^{2} \delta_{i j}\right) d^{3} r
\end{gathered}
$$

$$
p_{x}=p_{y}=p_{z}=0 \Rightarrow q_{10}=q_{11}=0
$$

For any axially symmetric distribution $\rho(\vec{r})$ the quadrupole moment tensor has the form:

$$
Q_{i j}=\left\{\begin{array}{ccc}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & -2 A
\end{array}\right\}
$$

Performing the integrals:

$$
\begin{gathered}
Q_{x x}=Q_{y y}=\frac{1}{4} Q R^{2}-\frac{1}{12} Q h^{2} \Rightarrow q_{22}=0 \\
Q_{z z}=-\frac{1}{2} Q R^{2}+\frac{1}{6} Q h^{2}
\end{gathered}
$$

Therefore:

$$
\Phi(\vec{r})=\frac{Q}{r}+\frac{1}{4 r^{3}} Q_{z z}\left(3 \cos ^{2} \theta-1\right)
$$

For part (b) remember that

$$
\begin{gathered}
E(r, \theta \phi)=-\nabla \Phi(r, \theta, \phi) \\
E_{r}=\frac{Q}{r^{2}}+\frac{3}{4 r^{4}} Q_{z z}\left(3 \cos ^{2} \theta-1\right) \\
E_{\theta}=\frac{3}{2 r^{4}} Q_{z z} \cos \theta \sin \theta \\
E_{\phi}=0
\end{gathered}
$$

