Chapter 5

Daniel Rhodes, Forrest Glines

Consider a cube with edge lengths h centered on the origin with faces parallel to the xy, yz, and xz planes with charges q distributed uniformly in the $+x$ half and $-q$ in the $-x$ half.
(a) Find the dipole moments.
(b) Find the potential due to the dipole moments using the multipole expansion
(c) Find the total energy of the charge in an external electric field $\vec{E}_{0}=E_{0} \hat{x}$ (the quadrupoles are all zero for this object).

Part a

Computing the dipoles moments is easy using (5.18)

$$
\begin{equation*}
p_{i}=\int d^{3} r \rho(\vec{r}) r_{i} \tag{1}
\end{equation*}
$$

By symmetery, only p_{1} will be nonzero

$$
\begin{equation*}
p_{1}=\int d^{3} r \rho(x) x=h^{3} \frac{q}{h^{3}} \frac{1}{4}=\frac{q}{4} \tag{2}
\end{equation*}
$$

Part b

The only nonzero moment is

$$
\begin{equation*}
q_{11}=-\sqrt{\frac{3}{8 \pi}}\left(p_{x}-i p_{y}\right)=-\sqrt{\frac{3}{8 \pi}} \frac{q}{4} \tag{3}
\end{equation*}
$$

Now

$$
\begin{equation*}
q_{\ell,-m}=(-1)^{m} q_{\ell m}^{*} \tag{4}
\end{equation*}
$$

so that $q_{1,-1}=-q_{11}$. Then the potential is given by

$$
\begin{align*}
\Phi(\vec{r}) & =-\frac{4 \pi}{3} \sqrt{\frac{3}{8 \pi}} \frac{q}{4} \frac{Y_{11}(\theta, \phi)}{r^{2}}+\frac{4 \pi}{3} \sqrt{\frac{3}{8 \pi}} \frac{q}{4} \frac{Y_{1,-1}(\theta, \phi)}{r^{2}} \tag{5}\\
& =\sqrt{\frac{\pi}{24}} \frac{q}{4 r^{2}}\left(\sqrt{\frac{3}{8 \pi}} e^{-i \phi} \sin \theta+\sqrt{\frac{3}{8 \pi}} e^{i \phi} \sin \theta\right) \tag{6}\\
=\frac{q}{16 r^{2}} \cos \phi \sin \theta & \tag{7}
\end{align*}
$$

Part c

We can compute the energy of the charge in the electric field using (5.35)

$$
\begin{equation*}
U=q \Phi_{0}-\vec{p} \cdot \vec{E}_{0}-\frac{1}{6} Q_{i j} \partial_{i} E_{0 j} \tag{8}
\end{equation*}
$$

since q and all $Q_{i j}$ are zero, only the $\vec{p} \cdot \vec{E}_{0}$ term is non zero. Then

$$
\begin{equation*}
U=-\frac{q E_{0}}{4} \tag{9}
\end{equation*}
$$

