Practice Problem from § 4 - Electrostatics CLASSICAL ELECTRODYNAMICS I - PHY841 - Prof. Pratt Carl E. Fields \& Avik Sarkar SOLUTION

Three charges are located at $-a \hat{\mathbf{y}},+a \hat{\mathbf{y}}$, and $+a \hat{\mathbf{z}}$ with charge $-q,-q$, and $+q$, respectively.
(a) - Find the electric potential a distance far away from the origin. Consider up to the first two non-zero components of the multipole expansion.

Recall the equation for the monopole term of the electric potential,

$$
\begin{equation*}
V_{\mathrm{mon}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{Q}{r}, \tag{1}
\end{equation*}
$$

where Q is the total charge of the configuration. Therefore, we can immediately see that the monopole term should be non-zero and considered in the expansion.

For our system, $Q=(-q)+(-q)+(+q) \equiv-q$, since we are considering discrete points of charge. Therefore the contribution to the electrostatic potential at large r is,

$$
\begin{equation*}
V_{\mathrm{mon}}(\mathbf{r})=-\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{q}{r} . \tag{2}
\end{equation*}
$$

Next, recall the dipole term for the multipole expansion,

$$
\begin{equation*}
V_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} . \tag{3}
\end{equation*}
$$

First, we must find the dipole moment for our collection of charges, which for discrete point charges, takes the form of,

$$
\begin{equation*}
\mathbf{p}=\sum_{i=1}^{N} q_{i} \mathbf{r}_{i}^{\prime}, \tag{4}
\end{equation*}
$$

where \mathbf{r}_{i}^{\prime} is the direction from \mathcal{O} to the $i-$ th point charge. For our system, we find

$$
\begin{equation*}
\mathbf{p}=\sum_{i=1}^{N} q_{i} \mathbf{r}_{i}^{\prime} \equiv(-q)(-a \hat{\mathbf{y}})+(-q)(+a \hat{\mathbf{y}})+(q)(+a \hat{\mathbf{z}}) \equiv q a \hat{\mathbf{z}} . \tag{5}
\end{equation*}
$$

Therefore, the final dipole term of the electric potential is given as,

$$
\begin{equation*}
V_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \equiv \frac{q a}{4 \pi \epsilon_{\mathrm{o}}} \frac{\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}}{r^{2}} \equiv \frac{q a}{4 \pi \epsilon_{\mathrm{o}}} \frac{\cos \theta}{r^{2}}, \tag{6}
\end{equation*}
$$

where in the last step, we used the fact that $\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=\cos \theta$.
The total potential is thus written as the sum of the two components,

$$
\begin{equation*}
V(r, \theta) \approx V_{\mathrm{mon}}(\mathbf{r})+V_{\mathrm{dip}}(\mathbf{r}) \approx \frac{q}{4 \pi \epsilon_{\mathrm{o}}}\left(-\frac{1}{r}+\frac{a \cos \theta}{r^{2}}\right) . \tag{7}
\end{equation*}
$$

(b) - Using the electric potential from (a), compute the electric field in spherical coordinates.

Recall that $\mathbf{E}=-\nabla V$, therefore the components of the electric field are,

$$
\begin{gather*}
E_{r}=\frac{q}{4 \pi \epsilon_{\mathrm{o}}} \frac{1}{r^{2}}-\frac{2 a \cos \theta}{r^{3}}, \tag{8}\\
E_{\theta}=-\frac{q}{4 \pi \epsilon_{\mathrm{o}}} \frac{a \sin \theta}{r^{3}} . \tag{9}
\end{gather*}
$$

Therefore the final electric field for this configuration is found to be,

$$
\begin{equation*}
E(r, \theta)=\frac{q}{4 \pi \epsilon_{\mathrm{o}}}\left[\left(\frac{1}{r^{2}}-\frac{2 a \cos \theta}{r^{3}}\right) \hat{\mathbf{r}}-\frac{a \sin \theta}{r^{3}} \hat{\theta}\right] \tag{10}
\end{equation*}
$$

