Electrodynamics I
 Chapter 4 Review Problem

Jaclyn Schmitt, Daniel Douglas

April 23, 2017

Consider a spherical shell with radius R which has potential $V(\theta, \phi)=V_{0} \sin ^{2}(\theta) \cos (2 \phi)$. Find the potential everywhere.

General Solution

The potential outside the shell obeys Laplace's equation:

$$
\nabla^{2} \Phi=0
$$

The general solution in spherical coordinates is

$$
\Phi(r, \theta, \phi)=\sum_{l m}\left[A_{l m}\left(\frac{r}{R}\right)^{l}+B_{l m}\left(\frac{r}{R}\right)^{-(l+1)}\right] Y_{l}^{m}(\theta, \phi)
$$

We solve for the coefficients, $A_{l m}, B_{l m}$, using the orthonormality of the set of Y_{l}^{m} :

$$
\int Y_{l^{\prime}}^{m^{\prime} *} Y_{l}^{m} d \Omega=\delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

So we apply this to our boundary condition:

$$
\begin{array}{r}
\Phi(R, \theta, \phi)=V(\theta, \phi)=\sum_{l m}\left[A_{l m}+B_{l m}\right] Y_{l}^{m}(\theta, \phi) \\
\int Y_{l^{\prime}}^{m^{\prime} *}\left[\sum_{l m}\left[A_{l m}+B_{l m}\right] Y_{l}^{m}\right] d \Omega=\int Y_{l^{\prime}}^{m^{\prime} *} V d \Omega \\
A_{l m}+B_{l m}=\int Y_{l}^{m *} V d \Omega
\end{array}
$$

Now, in our case, we are constrained by the fact that our potential should be finite everywhere. Therefore, within the shell, $B_{l m}=0$, and outside of the shell, $A_{l m}=0$.

Now we use this method to decompose our boundary condition into the spherical harmonics:

$$
A_{l m}+B_{l m}=\int Y_{l}^{m *} V_{0} \sin ^{2} \theta \cos 2 \phi d \Omega
$$

And we find that

$$
A_{l m}+B_{l m}=\left\{\begin{array}{lc}
\frac{2 \sqrt{2 \pi}}{\sqrt{15}} V_{0} & l=2, m= \pm 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

So that the solution is

$$
\Phi(r, \theta, \phi)= \begin{cases}\frac{2 \sqrt{2 \pi}}{\sqrt{15}} V_{0}\left(\frac{r}{R}\right)^{2}\left(Y_{2}^{-2}(\theta, \phi)+Y_{2}^{2}(\theta, \phi)\right) & r \leq R \\ \frac{2 \sqrt{2 \pi}}{\sqrt{15}} V_{0}\left(\frac{R}{r}\right)^{3}\left(Y_{2}^{-2}(\theta, \phi)+Y_{2}^{2}(\theta, \phi)\right) & r>R\end{cases}
$$

Azimuthal Symmetry

When the boundary conditions do not depend upon the azimuthal angle ($\frac{\partial V}{\partial \phi}=0$), the set of functions which are solutions to the Laplace equations becomes

$$
\Phi(r, \theta, \phi)=\sum_{l}\left[A_{l}\left(\frac{r}{R}\right)^{l}+B_{l}\left(\frac{r}{R}\right)^{-(l+1)}\right] P_{l}(\cos \theta)
$$

Where P_{l} are the Legendre polynomials, which follow the orthogonality condition:

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n}
$$

As above, we apply this to our boundary condition:

$$
\begin{aligned}
\Phi(R, \theta, \phi) & =V(\theta, \phi)=\sum_{l}\left[A_{l}+B_{l}\right] P_{l}(\cos \theta) \\
\int_{0}^{\pi} P_{n}(\cos \theta)\left[\sum_{l}\left[A_{l}+B_{l}\right] P_{l}(\cos \theta)\right] \sin \theta d \theta & =\int P_{l}(\cos \theta) V \sin \theta d \theta \\
\left(A_{l}+B_{l}\right) \frac{2}{2 l+1} & =\int P_{l}(\cos \theta) V \sin \theta d \theta \\
A_{l}+B_{l} & =\frac{2 l+1}{2} \int P_{l}(\cos \theta) V \sin \theta d \theta
\end{aligned}
$$

And using similar arguments as above, the relative values of A_{l} and B_{l} are constrained by the asymptotic behavior at $r=0$ and $r=\infty$.

Now, take the boundary condition $V(\theta, \phi)=V_{0} \sin ^{2} \theta$. Applying this method, we find that

$$
A_{l}+B_{l}= \begin{cases}\frac{2}{3} V_{0} & l=0 \\ -\frac{2}{3} V_{0} & l=2 \\ 0 & \text { otherwise }\end{cases}
$$

So that the exact solution is

$$
\Phi(r, \theta, \phi)= \begin{cases}\frac{2}{3} V_{0}\left(P_{0}(\cos \theta)-\left(\frac{r}{R}\right)^{2} P_{2}(\cos \theta)\right) & r \leq R \\ \frac{2}{3} V_{0}\left(\frac{R}{r} P_{0}(\cos \theta)-\left(\frac{R}{r}\right)^{3} P_{2}(\cos \theta)\right) & r>R\end{cases}
$$

