Problem 1.A Solution

Starting from the equations of motions for a relativistic charged particle

$$
\begin{equation*}
\frac{d}{d t}(m \gamma \vec{v})=\frac{d}{d t}(\vec{p})=e\left(\vec{E}+\frac{1}{c}(\vec{v} \times \vec{B})\right) \tag{1.1}
\end{equation*}
$$

where both the electric field and magnetic field point along the z -axis and have equal magnitudes, we obtain from the z -component of the equation of motion

$$
\frac{d p_{z}}{d t}=e E \Rightarrow p_{z}=e E t
$$

We now want to solve for v_{z} as a function of time. By using the definition of the total energy of a relativistic free particle (which coincides with the kinetic energy of the charged particle in this case), we obtain the following relation between v_{z} and p_{z}

$$
\begin{gather*}
E_{k i n}=\gamma m c^{2}, p_{z}=\gamma m v_{z} \Rightarrow v_{z}=\frac{p_{z} c^{2}}{E_{k i n}}(1.3) \tag{1.3}\\
E_{k i n}=\sqrt{\left(m c^{2}\right)^{2}+\left(p_{x}(t) c\right)^{2}+\left(p_{y}(t) c\right)^{2}+\left(p_{z}(t) c\right)^{2}} \tag{1.4}
\end{gather*}
$$

It should be noted that the quantity $\left(p_{x}(t) c\right)^{2}+\left(p_{y}(t) c\right)^{2}$ is a constant of motion (see appendix for proof), thus from now on we let $\kappa_{0}^{2}=\left(m c^{2}\right)^{2}+\left(p_{x}(t) c\right)^{2}+\left(p_{y}(t) c\right)^{2}$ define this constant value. By combining equations 1.2, 1.3 and 1.4 we obtain the following differential equation for z as a function of time

$$
\begin{equation*}
\frac{d z}{d t}=v_{z}(t)=\frac{e E c^{2} t}{\sqrt{\kappa_{0}^{2}+(e E c t)^{2}}} \Rightarrow z(t)=\frac{1}{e E} \sqrt{\kappa_{0}^{2}+(e E c t)^{2}} \tag{1.5}
\end{equation*}
$$

To solve the equations of motion along the x and y axes we use the following change of variables to simplify the solutions and make more evident the circular motion in the xy-plane

$$
\eta(t)=p_{x}(t)+i p_{y}(t)
$$

Thus by applying the change of variables 1.6 on the x and y components of equation 1.1 and applying the same relation in equation 1.3 with the x and y components of velocity we obtain

$$
\begin{equation*}
\frac{d \eta}{d t}=\frac{e B}{c}\left(v_{y}-i v_{x}\right)=\frac{e B c}{E_{k i n}}\left(p_{y}-i p_{x}\right)=\frac{-i e B c}{E_{k i n}} \eta \Rightarrow \frac{d \eta}{\eta}=-i d \phi \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
d \phi=\frac{e B c}{E_{\text {kin }}} d t \Rightarrow \phi=\int \frac{e B c}{\sqrt{\kappa_{0}^{2}+(e E c t)^{2}}} d t=\frac{B}{E} \sinh ^{-1}\left(\frac{e E t}{\kappa_{0}}\right) \tag{1.8}
\end{equation*}
$$

Thus the solution of the equation 1.7 is given by

$$
\eta(\phi(t))=K e^{-i \phi}(1.9)
$$

Since we are interested in the x and y components of the velocity to obtain the position along these axes, note that

$$
\begin{equation*}
\eta(t)=p_{x}(t)+i p_{y}(t)=\frac{E_{\text {kin }}}{c^{2}}\left(\frac{d x}{d t}+i \frac{d y}{d t}\right)=\frac{e B}{c}\left(\frac{d x}{d \phi}+i \frac{d y}{d \phi}\right) \tag{1.10}
\end{equation*}
$$

The motion along the x -axis and the y -axis are given by the real and imaginary part of equations 1.9 and 1.10 respectively

$$
\begin{align*}
x(\phi(t)) & =\frac{c K}{e B} \int \cos \phi d \phi=\frac{c K}{e B} \sin \phi \tag{1.11}\\
y(\phi(t)) & =\frac{c K}{e B} \int-\sin \phi d \phi \tag{1.12}
\end{align*}=\frac{c K}{e B} \cos \phi, ~ \$
$$

We can also represent the position along the z -axis as function of ϕ by solving for t in equation 1.8 and substituting this expression in equation (1.5) to obtain

$$
\begin{equation*}
z(\phi(t))=\frac{\kappa_{0}}{e E} \sqrt{1+\left(\sinh \left(\frac{E \phi}{B}\right)\right)^{2}}=\frac{\kappa_{0}}{e E \phi} \cosh \left(\frac{E \phi}{B}\right) \tag{1.13}
\end{equation*}
$$

From equations $1.11,1.12$ and 1.13 we see that the motion of the particle is a helix. It should be noted that while the transverse momentum quantity

$$
p_{\perp}(t)=\sqrt{p_{x}(t)^{2}+p_{y}(t)^{2}}=K(1.14)
$$

is indeed a constant of motion, the transverse velocity is not

$$
\begin{equation*}
v_{\perp}(t)=\frac{c^{2}}{E_{k i n}} \sqrt{p_{x}(t)^{2}+p_{y}(t)^{2}}=\frac{K c^{2}}{\sqrt{\kappa_{0}^{2}+(e E c t)^{2}}} \tag{1.15}
\end{equation*}
$$

Problem 1.B Solution

For a magnetic field along the z-axis and an electric field along the y-axis with the same magnitude, the equations of motion are given by

$$
\begin{equation*}
\frac{d p_{x}}{d t}=\frac{e E}{c} v_{y}, \quad \frac{d p_{y}}{d t}=e E\left(1-\frac{v_{x}}{c}\right), \quad \frac{d p_{z}}{d t}=0 \tag{2.1}
\end{equation*}
$$

By considering the time derivative of the kinetic energy of the particle and the vector form of the equations of motion as seen in equation 1.1, we obtain the following relation

$$
\frac{d E_{\text {kin }}}{d t}=\frac{d}{d t}\left(\gamma m c^{2}\right)=\vec{v} \cdot \frac{d \vec{p}}{d t}=\vec{v} \cdot\left(e \vec{E}+\frac{e}{c} \vec{v} \times \vec{B}\right)=e \vec{v} \cdot \vec{E}=e E v_{y} \text { (2.2) }
$$

where the last equality comes from the electric field pointing along the y-axis only. By combining the x component of equation 2.1 with equation 2.2 with get the following relation of energy and momentum along x

$$
\begin{equation*}
\frac{d E_{k i n}}{d t}=c \frac{d p_{x}}{d t} \Rightarrow \frac{d}{d t}\left(E_{k i n}-c p_{x}\right)=0 \tag{2.3}
\end{equation*}
$$

Thus, we see that the z component of equation 2.1 and equation 2.3 are constants with respect to time. By using the definition of the kinetic energy, we can obtain an expression for the x component of momentum as a function of the y component of momentum

$$
\begin{equation*}
E_{\text {kin }}^{2}=\left(m c^{2}\right)^{2}+\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) c^{2} \Rightarrow E_{\text {kin }}^{2}-p_{x}^{2} c^{2}=p_{y}^{2}+\delta^{2} \tag{2.4}
\end{equation*}
$$

where the constants terms of mass energy and z component of momentum have been combined into the constant δ^{2}. By factoring out the last step in equation 2.4 we obtain

$$
\left(E_{k i n}-p_{x} c\right)\left(E_{k i n}+p_{x} c\right)=\alpha\left(E_{k i n}+p_{x} c\right)=p_{y}^{2}+\delta^{2}(2.5)
$$

where α is the constant determined by equation 2.3. By solving for the kinetic energy in equation 2.3 and substituting this value in equation 2.6 and solving for x component of momentum we obtain

$$
\begin{equation*}
p_{x}=\frac{-\alpha}{2 c}+\frac{\left(c p_{y}\right)^{2}+\delta^{2}}{2 \alpha c} \tag{2.6}
\end{equation*}
$$

Similarly, by solving for the x component of momentum in equation 2.3 and substituting this value in equation 2.5 we obtain the following expression of the kinetic energy as a function of the y component of momentum

$$
E_{\text {kin }}=\frac{\alpha}{2}+\frac{\left(c p_{y}\right)^{2}+\delta^{2}}{2 \alpha}(2.7)
$$

If we now multiply equation 2.7 with the y component in equation 2.1 we can obtain an expression of the y momentum component as a function of time

$$
\begin{gather*}
E_{k i n} \frac{d p_{y}}{d t}=e E\left(E_{\text {kin }}-\frac{E_{k i n} v_{x}}{c}\right)=e E\left(E_{\text {kin }}-c p_{x}\right)=\alpha e E \\
\Rightarrow\left(\frac{\alpha}{2}+\frac{\left(c p_{y}\right)^{2}+\delta^{2}}{2 \alpha}\right) d p_{y}=\alpha e E d t \Rightarrow\left(1+\left(\frac{\delta}{\alpha}\right)^{2}\right) p_{y}+\frac{c^{2} p_{y}^{3}}{3 \alpha^{2}}=2 e E t \tag{2.9}
\end{gather*}
$$

To obtain the motion of the particle, we will solve for the coordinates as a function of the y component of momentum by applying the following chain rule which is obtained from equation 2.8

$$
\begin{equation*}
\frac{d p_{y}}{d t}=\frac{e E \alpha}{E_{k i n}} \tag{2.10}
\end{equation*}
$$

Thus, the coordinates of the particle are given by

$$
\begin{gather*}
\frac{d x}{d t}=\frac{d x}{d p_{y}} \frac{e E \alpha}{E_{\text {kin }}}=\frac{c^{2} p_{x}}{E_{\text {kin }}}=\frac{c^{2}}{E_{\text {kin }}}\left(\frac{-\alpha}{2 c}+\frac{\left(c p_{y}\right)^{2}+\delta^{2}}{2 \alpha c}\right) \tag{2.11}\\
\Rightarrow x\left(p_{y}(t)\right)=\frac{c^{2}}{e E \alpha} \int\left(\frac{-\alpha}{2 c}+\frac{\left(c p_{y}\right)^{2}+\delta^{2}}{2 \alpha c}\right) d p_{y}=\frac{c}{2 e E}\left(-1+\left(\frac{\delta}{\alpha}\right)^{2}\right) p_{y}+\frac{\left(c p_{y}\right)^{3}}{6 e E \alpha^{2}}
\end{gather*}
$$

And similarly for the y and z coordinates, one obtains

$$
\begin{equation*}
y\left(p_{y}(t)\right)=\frac{\left(c p_{y}\right)^{2}}{2 e E \alpha}, \quad z\left(p_{y}(t)\right)=\frac{c^{2} p_{y} p_{z}}{e E \alpha} \tag{2.13}
\end{equation*}
$$

Appendix

- Proof that the quantity $\left(p_{x}(t) c\right)^{2}+\left(p_{y}(t) c\right)^{2}$ is a constant of motion for a relativistic charged particle moving through a region with magnetic field perpendicular to the xy plane.

Starting from the x and y components of equation 1.1, we have that

$$
\begin{gathered}
\frac{d p_{x}}{d t}=\frac{e}{c} v_{y} B \Rightarrow \gamma \frac{d p_{x}}{d t}=\frac{d p_{x}}{d \tau}=\frac{e B}{c} \gamma v_{y}=\frac{e B}{m c} P_{y}(A .1) \\
\frac{d p_{y}}{d t}=-\frac{e}{c} v_{y} B \Rightarrow \frac{d p_{y}}{d \tau}=-\frac{e B}{m c} P_{x}(A .2)
\end{gathered}
$$

where we use the fact that the proper time of the particle is given by $\tau=\frac{t}{\gamma}$. We can decouple this set of differential equations by differentiating with respect to the proper time on equation A. 1 to obtain

$$
\frac{d^{2} p_{x}}{d \tau^{2}}=\frac{e B}{m c} \frac{d p_{y}}{d \tau}=-\left(\frac{e B}{m c}\right)^{2} p_{x} \text { (A.3) }
$$

which has solutions given by

$$
p_{x}(\tau(t))=c_{1} \cos \left(\frac{e B}{m c} \tau\right)+c_{2} \sin \left(\frac{e B}{m c} \tau\right)
$$

We can obtain the momentum along the y-axis by direct substitution of equation A. 4 in equation A.1, this way one obtains

$$
\begin{equation*}
p_{y}(\tau(t))=-c_{1} \sin \left(\frac{e B}{m c} \tau\right)+c_{2} \cos \left(\frac{e B}{m c} \tau\right) \tag{A.5}
\end{equation*}
$$

From here it is clear that the quantity $\left(p_{x}(t) c\right)^{2}+\left(p_{y}(t) c\right)^{2}$ is a constant of motion.

