
5.1 Practice Problem Solution

(a) Equate the number of uncoupled modes (2 modes per oscillator) to
the number of modes you get from integrating all modes up to the cutoff
wavenumber:
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This gives the Debye frequency,
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A
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(b) Total energy is proportional to the energy per momentum mode
multiplied by the occupancy of that mode, integrated over all momenta up
to the cutoff - in the limit T << h̄ωD, this cutoff is infinity.
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Let x = βpcs, so that dx = βpcs and
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x dx

This gives
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Then
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(c) As T →∞ coupling becomes negligible, and the specific heat equals
the number of degrees of freedom.

C(T →∞) = 2N (6)
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