5.1 Practice Problem Solution

(a) Equate the number of uncoupled modes (2 modes per oscillator) to the number of modes you get from integrating all modes up to the cutoff wavenumber:

$$
\begin{gather*}
2 N=\frac{2 A}{(2 \pi)^{2}} \int_{0}^{k_{D}} d^{2} k=\frac{2 A}{(2 \pi)^{2}} \cdot\left(2 \pi \frac{k_{D}^{2}}{2}\right) \\
\rightarrow k_{D}=\sqrt{\frac{4 \pi N}{A}} \tag{1}
\end{gather*}
$$

This gives the Debye frequency,

$$
\begin{equation*}
\omega_{D}=c_{s} k_{D}=2 c_{s} \sqrt{\frac{\pi N}{A}} \tag{2}
\end{equation*}
$$

(b) Total energy is proportional to the energy per momentum mode multiplied by the occupancy of that mode, integrated over all momenta up to the cutoff - in the limit $T \ll \hbar \omega_{D}$, this cutoff is infinity.

$$
\begin{equation*}
E=\frac{2 A}{(2 \pi \hbar)^{2}} \int_{0}^{\infty} d^{2} p p c_{s} \frac{e^{-\beta p c_{s}}}{1-e^{-\beta p c_{s}}} \tag{3}
\end{equation*}
$$

Let $x=\beta p c_{s}$, so that $d x=\beta p c_{s}$ and

$$
d^{2} p=2 \pi p d p=\frac{2 \pi}{\left(\beta c_{s}\right)^{2}} x d x
$$

This gives

$$
\begin{gather*}
E=\frac{4 \pi A T^{3}}{\left(2 \pi \hbar c_{s}\right)^{2}} \int_{0}^{\infty} d x x^{2} \frac{e^{-x}}{1-e^{-x}} \cdot\left(\frac{e^{x}}{e^{x}}\right) \\
=\frac{4 \pi A T^{3}}{\left(2 \pi \hbar c_{s}\right)^{2}} \int_{0}^{\infty} d x \frac{x^{2}}{e^{x}-1} \\
=\frac{4 \pi A T^{3}}{\left(2 \pi \hbar c_{s}\right)^{2}} \cdot \Gamma(3) \zeta(3) \\
=\frac{2 A T^{3}}{\pi \hbar^{2} c_{s}^{2}} \zeta(3) \tag{4}
\end{gather*}
$$

Then

$$
\begin{equation*}
C\left(T \ll \hbar \omega_{D}\right)=\frac{1}{A} \frac{d E}{d T}=\frac{6 T^{2}}{\pi \hbar^{2} c_{s}^{2}} \zeta(3) \tag{5}
\end{equation*}
$$

(c) As $T \rightarrow \infty$ coupling becomes negligible, and the specific heat equals the number of degrees of freedom.

$$
\begin{equation*}
C(T \rightarrow \infty)=2 N \tag{6}
\end{equation*}
$$

