Statistical Mechanics Review Problem

Daniel Douglas and Daniel Rhodes

December 5, 2017
1.

Show that the Liouville theorem,

$$
\frac{d}{d t}[\Delta \Omega]=\frac{d}{d t}\left[\frac{1}{(2 \pi \hbar)^{3}} \Pi_{i} \Delta x_{i} \Delta p_{i}\right]=0
$$

in a fixed time step, follows from Hamilton's equations and the equality of mixed partials:

$$
\begin{array}{r}
\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t} \\
\frac{\partial H}{\partial x_{i}}=-\frac{d p_{i}}{d t} \\
\frac{\partial^{2} H}{\partial x_{i} \partial p_{i}}=\frac{\partial^{2} H}{\partial p_{i} \partial x_{i}}
\end{array}
$$

Starting with

$$
\begin{array}{r}
\frac{\partial^{2} H}{\partial x_{i} \partial p_{i}}-\frac{\partial^{2} H}{\partial p_{i} \partial x_{i}}=0 \\
\frac{\partial}{\partial x_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial}{\partial p_{i}} \frac{\partial H}{\partial x_{i}}=0
\end{array}
$$

Now using Hamilton's equations:

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}\left(\frac{d x_{i}}{d t}\right)-\frac{\partial}{\partial p_{i}}\left(-\frac{d p_{i}}{d t}\right) & =0 \\
\Delta\left(\frac{d x_{i}}{d t}\right) \Delta p_{i}+\Delta\left(\frac{d p_{i}}{d t}\right) \Delta x_{i} & =0 \\
\frac{d}{d t}\left(\Delta x_{i} \Delta p_{i}\right) & =0 \\
\frac{d}{d t}\left((2 \pi \hbar)^{3} \Delta \Omega\right) & =0
\end{aligned}
$$

2.

A beam of particles has a transverse width of 1 mm and its transverse momentum has a spread of $1 \mathrm{keV} / \mathrm{c}$ at its focal plane. Farther down the beamline, the width of the beam is measured to be 5 mm . Use Liouville's theorem to find the spread in momentum at this point on the beamline.

Since the phase space volume is constant, $\Delta x_{T} \Delta p_{T}$ is also constant. Therefore,

$$
\begin{aligned}
\Delta p_{T}^{\prime} & =\Delta p_{T} \frac{\Delta x_{T}}{\Delta x_{T}^{\prime}} \\
& =1 \mathrm{keV} / \mathrm{c} \frac{1 \mathrm{~mm}}{5 \mathrm{~mm}} \\
& =200 \mathrm{eV} / \mathrm{c}
\end{aligned}
$$

