Chapter 3

3.1 - 3.2

Robert Branson, Jason Surbrook

Consider a low density two-dimensional gas of non-relativistic spin ½ fermions of mass m at temperature T = $1/\beta$ and chemical potential $\mu.$

In the context of the virial expansion:

$$P =
ho T \left[A_1 + \sum_{n=2}^{\infty} A_n \left(rac{
ho}{
ho_0}
ight)^{n-1}
ight], \ \
ho_0 \equiv rac{(2s+1)}{(2\pi\hbar)^3} \int d^3p \ e^{-\epsilon_p/T}$$

- (a) Find $\boldsymbol{\rho}_0$ in terms of \boldsymbol{m} and $\boldsymbol{T}.$
- (b) Expand the density ρ to second order in $\exp{(\beta\mu)}$. Express your answers to this part and the next two parts in terms of $\rho_0.$
- (c) Expand ρ^2 to second order in exp $(\beta\mu)$.
- (d) Expand $\delta P = P \rho T$ to second order in exp $(\beta \mu)$. (Hint: ln(1+x) = x $\frac{1}{2}x^2$ +).
- (e) Determine the second virial coefficient.