Beginning with the fundamental thermodynamic relation, and the definition of C,,
TdS = dE + PdV — pdN, C,=T (”—5)
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derive the equality
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Solution:

Begin by finding (aai;) :
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Now we need to find (i) , which can be done through the fundamental thermodynamic
N,T
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relation:
TdS = dE + PdV — udN
TdS + SdT — SdT = dE + PdV — udN
d(TS — E) = SdT + PdV — udN
—dF = 8dT + PdV — udN
since F=E-TS. From (5), we find that
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If we now take a partial derivative of S with respect to V and take a partial derivative of P with

respect to T, we arrive at the Maxwell relation
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If we now take a partial derivative with respect to T, we find
(5t = (575)
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Plugging this result into (1), we find

ac, _ as _ as _ . (0%P
(W) =T (avar) =T (arav) =T (aTZ)
T,N N,T N,T V,N

(5, =7(G7)
ov/irn arz/y N

as claimed.
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