Beginning with the fundamental thermodynamic relation, and the definition of \boldsymbol{C}_{v},

$$
T d S=d E+P d V-\mu d N, \quad C_{v}=T\left(\frac{\partial S}{\partial T}\right)_{N, V}
$$

derive the equality

$$
\left(\frac{\partial C_{v}}{\partial V}\right)_{T, N}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V, N}
$$

Solution:
Begin by finding $\left(\frac{\partial C_{v}}{\partial V}\right)_{T, N}$:

$$
\begin{equation*}
\left(\frac{\partial C_{v}}{\partial V}\right)_{T, N}=\frac{\partial}{\partial V}\left(T\left(\frac{\partial S}{\partial T}\right)_{N, V}\right)=T\left(\frac{\partial S}{\partial V \partial T}\right)_{N, T} \tag{1}
\end{equation*}
$$

Now we need to find $\left(\frac{\partial S}{\partial V \partial T}\right)_{N, T}$, which can be done through the fundamental thermodynamic relation:

$$
\begin{align*}
& T d S=d E+P d V-\mu d N \tag{2}\\
& T d S+S d T-S d T=d E+P d V-\mu d N \tag{3}\\
& d(T S-E)=S d T+P d V-\mu d N \tag{4}\\
& -d F=S d T+P d V-\mu d N \tag{5}
\end{align*}
$$

since $\mathrm{F}=\mathrm{E}-\mathrm{TS}$. From (5), we find that

$$
\begin{equation*}
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N} \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \tag{6}
\end{equation*}
$$

If we now take a partial derivative of S with respect to V and take a partial derivative of P with respect to T , we arrive at the Maxwell relation

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T, N}=\left(\frac{\partial P}{\partial T}\right)_{V, N} \tag{7}
\end{equation*}
$$

If we now take a partial derivative with respect to T, we find

$$
\begin{equation*}
\left(\frac{\partial S}{\partial T \partial V}\right)_{T, N}=\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V, N} \tag{8}
\end{equation*}
$$

Plugging this result into (1), we find

$$
\begin{gather*}
\left(\frac{\partial C_{v}}{\partial V}\right)_{T, N}=T\left(\frac{\partial S}{\partial V \partial T}\right)_{N, T}=T\left(\frac{\partial S}{\partial T \partial V}\right)_{N, T}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V, N} \tag{9}\\
\left(\frac{\partial C_{v}}{\partial V}\right)_{T, N}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V, N} \tag{10}
\end{gather*}
$$

as claimed.

