YOUR NAME(s): \qquad
Physics 831 Quiz \#8 - Friday, Nov. 17
Work in Groups of Three, and turn results in by Wednesday, Nov. 22, beginning of class

Using your results from Chapter 3, problem \#2,

1. (10 pts) Beginning with the Van der Waals eq. of state,

$$
P=\frac{\rho T}{1-\rho / \rho_{s}}-a \rho^{2},
$$

Find an expression for the free-energy density, $f(\rho, T)=-P+\mu \rho$. This requires finding $\mu(\rho, T)$.
2. (10 pts) Using $\mathcal{V}(\rho, T)=f-\mu_{0} \rho+P_{0}$, where μ_{0} refers to the chemical potential for a uniform distribution of density ρ_{0}, plot $\mathcal{V}(\rho, T) /\left(a \rho_{s}^{2}\right)$ as a function of ρ / ρ_{s} for three temperatures ($T=6 a \rho_{s} / 27, T=T_{c}=8 a \rho_{s} / 27, T=10 a \rho_{s} / 27$) and with $\rho_{0}=\rho_{c}=\rho_{s} / 3$. It might be helpful to change variables to $x \equiv \rho / \rho_{s}, t \equiv T /\left(a \rho_{s}\right), \tilde{\mu} \equiv \mu /\left(a \rho_{s}\right)$.
3. (10 pts) For $T>T_{c}$ find the parameter $A\left(\rho_{0}, T\right)$ used in landau theory,

$$
\mathcal{V}(\rho, T)+\frac{1}{2} \kappa(\nabla \delta \rho)^{2}=f-\mu_{0} \rho+P_{0}+\frac{1}{2} \kappa(\nabla \delta \rho)^{2}=\frac{1}{2} A(\delta \rho)^{2}+\frac{1}{2} \kappa(\nabla \delta \rho)^{2}, \quad \delta \rho=\rho-\rho_{0} .
$$

4. (10 pts) Show that $A \rightarrow 0$ when $T=T_{c}$ and $\rho=\rho_{c}$.
5. (10 pts) Using expressions from Chapter 6, find the density-density correlation function for $T>T_{c}$,

$$
\Gamma(r)=\langle\delta \rho(r=0) \delta \rho(r)\rangle .
$$

6. (10 pts) Find the fluctuation of the density $\chi_{\rho \rho}=\langle\delta Q \delta Q\rangle / V$ from $\Gamma(r)$.
