your name(s)
 Physics 831 Quiz \#6 - Friday, Oct. 132017

\qquad

Work in groups of three or four:

1. Consider an engine that works in a PV cycle $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a \cdots$. The equation of state is that of a monotonic ideal gas.

$$
\begin{aligned}
P_{a}=P_{b}=2 P_{0}, & P_{c}=P_{d}=P_{0} \\
V_{a}=V_{d}=V_{0}, & V_{b}=V_{c}=2 V_{0} .
\end{aligned}
$$

(a) (5 pts) What is the work done in the cycle?
(b) (5 pts) What is the efficiency of the engine?
2. An ideal gas of particles of mass m is initially: at a uniform temperature T_{0}, has zero collective velocity, and as far as the eye can see, the number density profile initially has an exponential profile in the x direction:

$$
\rho(x, t=0)=\rho_{0} e^{-x / \lambda} .
$$

The gas then expands expands hyrodynamically. For a solution, assume the velocity is independent of x and rises linearly in time, $v=\alpha t$.
(a) (5 pts) Find α.
(b) $(5 \mathrm{pts})$ What is the temperature, $T(x, t)$?
(c) (5 pts) What is the density profile, $\rho(x, t)$?

The equations of hydrodynamics are:

$$
\begin{aligned}
\frac{D}{D t} v & =-\frac{\partial_{x} P}{m \rho} \\
\frac{D}{D t} \rho & =-\rho \partial_{x} v \\
\frac{D}{D t} \epsilon & =-(P+\epsilon) \nabla \cdot \mathbf{v} \\
\frac{D}{D t} & =\partial_{t}+v \partial_{x}
\end{aligned}
$$

$$
\text { a) } \begin{aligned}
W & =\text { area in Loop } \\
& =P_{0} V_{0}
\end{aligned}
$$

b) Heat enters in $a b i d a$

$$
\begin{gathered}
e f f=\frac{P_{0} V_{0}}{Q_{d a}+Q_{a b}} \\
U_{a}=\frac{3}{2} \cdot 2 P_{0} v_{0}, U_{b}=\frac{3}{2} \cdot 4 P_{v} V_{0}, U_{d}=\frac{3}{2} P_{v} V_{0} \\
Q_{a b}=U_{b}-U_{a}+W_{a b}=3 P_{0} V_{0}+2 P_{0} V_{0}=5 P_{0} V_{0} \\
Q_{d a}=U_{a}-U_{d}=\frac{3}{2} P_{0} V_{0} \\
e=\frac{13 / 2 P_{v} V_{0}}{P_{0} V_{0}}=\frac{13}{2}
\end{gathered}
$$

2a) $\alpha=\frac{-\partial_{x} \rho T}{m \rho}=T_{0} / m \lambda$
b) $T=T_{0}$, entropy wuseval, no expansion
c) $\rho=\rho_{0} \exp \left\{=\left(x-\frac{1}{2} \alpha t^{2}\right) / \lambda\right\}$

