your name (s)
Physics 831 Quiz \#5
Friday, Oct. 6, 2017

Work in groups of three to four.
Consider the equation of state

$$
P(\rho, T)=\rho T e^{\rho / \rho_{0}}-a \frac{\rho^{2}}{\rho_{0}} .
$$

1. (5 pts) Solve for the critical density ρ_{c} and the critical temperature T_{c} in terms of ρ_{0} and a.
2. (5 pts) Using the Maxwell relation,

$$
\left.\frac{\partial(P / T)}{\partial \beta}\right|_{N, V}=-\left.\frac{\partial E}{\partial V}\right|_{N, T}
$$

Find the energy per particle as a function of temperature and density.
3. (5 pts) If the system expands at constant temperature from volume per particle v_{a} to v_{b}, find the change in entropy per particle s.
4. (5 pts) Using $T s=e+P v-\mu$, find the change in chemical potential between the two points a and b.
5. (5 pts) Find the density of the liquid on the coexistence curve as $T \rightarrow 0$.
6. (5 pts) Find the latent heat per particle as $T \rightarrow 0$.

$$
\text { 1) } \begin{aligned}
& p / \rho_{0}=x T e^{x}-a x^{2}, x=\rho_{0} \\
& \frac{d}{d x} \frac{p}{\rho_{0}}=T e^{x}\{1+x\}-2 a x=0 \\
& \frac{d^{2}}{d x^{2}} \frac{p}{\rho_{0}}=T e^{x}\{2+x\}-2 a=0 \\
& 2 a x=(1+x) \frac{2 a}{2+x} \\
& x^{2}+2 x-1=0, x=\frac{\sqrt{5}-1}{2}, \rho_{c}=\rho_{0} \frac{\sqrt{5}-1}{2} \\
& 2 a e^{-\Omega / \rho_{0}}
\end{aligned}
$$

2.)

$$
\begin{aligned}
& \text { 2.) } \\
& \frac{\partial(E / N)}{\partial(v / N)}=-\partial_{\beta}\left[-a \beta \frac{\rho^{2}}{\rho_{0}}\right]=\left.{\frac{a}{\rho_{0} v^{2}}}^{\frac{\partial(P / T)}{\partial \beta}}\right|_{N, V}=-\left.\frac{\partial E}{\partial V}\right|_{N, T}, \\
& E / N=\frac{3}{2} T+\int_{\infty}^{v} d v \frac{a}{\rho_{0} v^{2}}=\frac{3}{2} 7-a \rho / \rho_{0}
\end{aligned}
$$

(3.)

$$
\begin{aligned}
& d s=\beta d E / N+\beta P d v \\
&=\beta\left(a \frac{d v}{\rho_{0} v^{2}}+P d v\right) \\
& s_{b}-s_{a}=\beta \int_{v_{a}} d v\left\{\frac{a}{\rho_{0} v^{2}}-\frac{a}{\rho_{0}}+(T / v) e^{1 / \rho_{0} v}\right\} \\
&=-\beta \int_{0} d \rho \frac{T}{\rho} e^{\rho / \rho_{0}} \\
&=\int_{x_{a}} d x \frac{e^{x}}{x} x_{a} x_{a, b} \equiv \frac{1}{\rho_{0} v_{a, b}} \\
& \int_{x_{a}}^{x_{b}} \frac{e^{x}}{x} d x=\int_{-x_{a}}^{x_{b}-x} \frac{e^{x}}{x} d x=E_{i}\left(x_{a}\right)-E_{i}\left(x_{b}\right)
\end{aligned}
$$

$$
s_{b}-s_{a}=E_{i}\left(x_{b}\right)-E_{i}\left(x_{a}\right)
$$

(4.)

$$
\begin{aligned}
T s & =(E / N)+P / \rho-\mu \\
\Delta \mu= & \Delta E / N+\Delta P / \rho-\Delta(T s) \\
= & \frac{2 a \rho_{a}}{\rho_{0}}-\frac{2 a \rho_{b}}{\rho_{b}}+T\left(\rho_{b} e^{\rho_{b} / \rho_{0}}-\rho_{a} e^{\rho_{a} / \rho_{0}}\right) \\
& -T E_{i}\left(\rho_{b} / \rho_{b}\right)+T E_{i}\left(\rho_{a} / \rho_{0}\right)
\end{aligned}
$$

5. $y \cdot u$ need to find ρ_{L} s.t.

$$
\rho_{L} T e^{\rho_{L} / \rho_{0}} \rightarrow a \rho_{L}^{2}=f i n i t e \text { as } T \rightarrow 0 \text {, }
$$

$$
\text { ont if } \rho_{L} \rightarrow \infty
$$

6. $L=\cdots \infty$ because $E / N \sim-a \rho 2 / \rho_{0}$
