your name(s)

Physics 831 Quiz #4 Friday, Sep. 29, 2017

Work in groups of three to four.

Eq. (3.1) from lecture notes:

$$P = \rho T \left[A_1 + \sum_{n=2}^{\infty} A_n \left(\frac{\rho}{\rho_0} \right)^{n-1} \right], \quad \rho_0 \equiv \frac{(2j+1)}{(2\pi\hbar)^3} \int d^3p \ e^{-\epsilon_p/T}.$$
 (1)

Consider a low density two-dimensional gas of non-relativistic spin-s fermions of mass m at temperature $T = 1/\beta$ and chemical potential $\mu < 0$.

1. Show that $P = \rho T$ for $\mu \ll 0$. Begin with:

$$\begin{split} \rho &= (2s+1) \int \frac{d^2 p}{(2\pi\hbar)^2} f(\vec{p}), \\ P &= (2s+1)T \int \frac{d^2 p}{(2\pi\hbar)^2} \ln[1+e^{-\beta(E-\mu)}], \\ f(\vec{p}) &= \frac{e^{-\beta(E-\mu)}}{1+e^{-\beta(E-\mu)}}. \end{split}$$

Here, P and ρ are the two-dimensional versions: P is a force per unit length and ρ is a number per unit area.

- 2. Find ρ_0 as defined in Eq. (1) in terms of m and T, but adjusting for two dimensions.
- 3. Expand the density ρ to second order in $e^{\beta\mu}$, i.e., to $e^{2\beta\mu}$. Express your answers for this part and the next two parts in terms of ρ_0 .
- 4. Expand ρ^2 to second order in $e^{\beta\mu}$.
- 5. Expand $\delta P \equiv P \rho T$ to second order in $e^{\beta \mu}$.

6. Determine the second virial coefficient defined by the two-dimensional version of Eq. (1)

1.
$$\ln (1+\chi) \sim \chi$$
, so as $e^{\beta n \rightarrow 0}$,
 $p = (2s+1) \int \frac{d^2 p}{(2\pi \hbar)^2} e^{-\beta(\epsilon-n)}$
 $P = (2s+1) + \int \frac{d^2 p}{(2\pi \hbar)^2} e^{-\beta(\epsilon-1)}$
 $= g^+ = b_3 \text{ inspection}$

