your name (s) \qquad
Physics 831 Quiz \#4
Friday, Sep. 29, 2017

Work in groups of three to four.
Eq. (3.1) from lecture notes:

$$
\begin{equation*}
P=\rho T\left[A_{1}+\sum_{n=2}^{\infty} A_{n}\left(\frac{\rho}{\rho_{0}}\right)^{n-1}\right], \quad \rho_{0} \equiv \frac{(2 j+1)}{(2 \pi \hbar)^{3}} \int d^{3} p e^{-\epsilon_{p} / T} . \tag{1}
\end{equation*}
$$

Consider a low density two-dimensional gas of non-relativistic spins fermions of mass m at temperature $T=1 / \beta$ and chemical potential $\mu<0$.

1. Show that $P=\rho T$ for $\mu \ll 0$. Begin with:

$$
\begin{aligned}
\rho & =(2 s+1) \int \frac{d^{2} p}{(2 \pi \hbar)^{2}} f(\vec{p}), \\
P & =(2 s+1) T \int \frac{d^{2} p}{(2 \pi \hbar)^{2}} \ln \left[1+e^{-\beta(E-\mu)}\right] \\
f(\vec{p}) & =\frac{e^{-\beta(E-\mu)}}{1+e^{-\beta(E-\mu)}} .
\end{aligned}
$$

Here, P and ρ are the two-dimensional versions: P is a force per unit length and ρ is a number per unit area.
2. Find ρ_{0} as defined in Eq. (1) in terms of m and T, but adjusting for two dimensions.
3. Expand the density ρ to second order in $e^{\beta \mu}$, i.e., to $e^{2 \beta \mu}$. Express your answers for this part and the next two parts in terms of ρ_{0}.
4. Expand ρ^{2} to second order in $e^{\beta \mu}$.
5. Expand $\delta P \equiv P-\rho T$ to second order in $e^{\beta \mu}$.
6. Determine the second virial coefficient defined by the two-dimensional version of Eq. (1)

2.) $\rho_{0}=(2 \delta+1)\left(\int \frac{d p_{x}}{2 \pi \hbar} e^{\left.-p_{x}^{2} / 2 m t\right)^{2}=\left(\frac{\sqrt{m T}}{\sqrt{2 \pi \hbar^{2}}}\right)^{2}(2 \delta+1)}\right.$

$$
=\frac{m T}{2 \pi \hbar^{2}}(2 s+1)
$$

3) $\rho \approx(2 s+1) \int \frac{d^{2} p}{(2 \pi t)^{2}}\left\{e^{\beta \mu} e^{-\beta E}-e^{2 \beta \mu} e^{-2 \beta E}\right\}$

$$
=\rho_{0} e^{\beta r}-\rho_{0} \cdot \frac{1}{2} e^{2 \beta \mu} \frac{1}{(2 s+1)}
$$

4) $\rho^{2} \cong \rho_{0}^{2} e^{2 \beta \mu}$

$$
\begin{aligned}
\rho) & \begin{aligned}
\rho / T & =\rho_{0} e^{\beta \mu}-\int \frac{d^{2} p}{(2 \pi \hbar)^{2}} \frac{1}{2} e^{2 \beta \mu} e^{-2 \beta E} \\
& =\rho_{0} e^{\beta \mu}-\frac{1}{4} \rho_{0} e^{2 \beta}
\end{aligned}
\end{aligned}
$$

6)

$$
P / T \cong \rho+\frac{1}{4} \rho_{0} e^{2 \beta \mu}+\cdots
$$

From $(4) e^{2 \beta \mu} \cong \frac{\rho^{2}}{\rho_{0}^{2}}$

$$
\frac{p}{T} \approx \rho+\frac{1}{4} \frac{\rho^{2}}{\rho_{0}^{2}}
$$

By comparison with Eq. (3.1)

$$
A_{2}=\frac{1}{4}
$$

