your name \qquad
Physics 831 Quiz \#1 - Friday, Sep. 6

1. (5 pts) Consider $N_{s} \rightarrow \infty$ systems. Each system has states i populated with probability p_{i}. The number of systems in state i are $n_{i}=p_{i} N_{s}$. If the ignorance I is defined as:

$$
I=\frac{N_{s}!}{\prod_{i} n_{i}!},
$$

and if the entropy is defined as

$$
S \equiv \frac{\ln I}{N_{s}},
$$

show that

$$
S=-\sum_{i} p_{i} \ln p_{i} .
$$

You may wish to know that $\ln N!\rightarrow N \ln N-N+\cdots$.
\qquad
2. (4 pts) Consider a spin- 1 particle (could have $m=1,0,-1$) that is in one of two energy levels, 0 and ϵ, i.e. the energy is independent of m and there are 6 total states possible.
(a) What is the entropy when $T=0$?
(b) What is the entropy when $T \rightarrow \infty$?
3. (4 pts) Fill out the following table. If a system adjusts itself to maximize the universe's entropy, which of these quantities will be either a maxima or minima for having the quantities in the left column fixed (or in the case of μ or T being connected to baths with those quantities fixed).

Fixed	Min. or Max.	Maximized or minimized quantity
V, Q, E	\max	S
V, Q, T		
V, μ, T		
$V, \alpha \equiv-\mu / T, E$		
P, Q, T		

Some potentially useful information: $F=E-T S, P=(T S-E+\mu Q) / V, G=P V+E-T S$, $H=E+P V$.
\qquad
4. (12 pts) Consider 2 identical bosons (A given level can have an arbitrary number of particles) in a 2-level system, where the energies are 0 and ϵ. In terms of ϵ and the temperature T, calculate:
(a) The partition function Z_{C}
(b) The average energy $\langle E\rangle$. Also, give $\langle E\rangle$ in the $T=0, \infty$ limits.
(c) The entropy S. Also give S in the $T=0, \infty$ limits.
(d) Now, connect the system to a particle bath with chemical potential $\mu<0$. Calculate $Z_{G C}(\mu, T)$. Find the average number of particles, $\langle N\rangle$ as a function of μ and T. Also, give the $T=0, \infty$ limits.
Hint: For a grand-canonical partition function of non-interacting particles, one can state that $Z_{G C}=Z_{1} Z_{2} \cdots Z_{n}$, where Z_{i} is the partition function for one single-particle level, $Z_{i}=1+e^{-\beta\left(\epsilon_{i}-\mu\right)}+e^{-2 \beta\left(\epsilon_{i}-\mu\right)}+e^{-3 \beta\left(\epsilon_{i}-\mu\right)} \cdots=1 /\left(1-e^{-\beta(\epsilon-\mu)}\right)$, where each term refers to a specific number of bosons in that level.

