- 1. A two-dimensional lattice is made of coupled oscillators that are constrained to move only within the two-dimensional plane of the lattice. The oscillators have mass m, the speed of sound is c_s and the Debye frequency is ω_D .
 - (a) At low temperature, the specific heat behaves at $C_V \sim T^{\alpha}$. What is α ?
 - (b) What is the specific heat per oscillator, (1/N)dE/dT, at high temperature? $(T >> \hbar\omega_D)$

#2 on back

2. (Extra Credit) Consider a mean field model of the Ising model where the mean spin is $\langle \sigma \rangle$, the coupling multiplied by the effective number of nearest neighbors is gJ, and the coupling to a magnetic field is $-\mu B\sigma_i$ for each spin. When the temperature is set exactly to T_c , $\langle \sigma \rangle$ behaves as B^{η} . Find η .