Physics 831 Quiz #2 - Friday, October 2

1. Consider a **MASSLESS**($\epsilon_p = p$) three-dimensional gas of spinless bosons which is kept at temperature *T*. Solve for the density of Bose Condensation, $\rho_c(T)$. You can set \hbar and c = 1 to save ink, and express sums in terms of Riemann-Zeta functions, $\zeta(n) \equiv \sum_k k^{-n}$.

2. Consider the equation of state

$$P = \rho T e^{\rho/\rho_0} - a \frac{\rho^2}{\rho_0}.$$

(a) Derive an expression for the energy per particle, E/N, as a function of the temperature T, the density ρ , and the parameters ρ_0 and a. Start your derivation with the Maxwell relation,

$$\left. \frac{\partial E}{\partial V} \right|_{\beta,N} = - \left. \frac{\partial (\beta P)}{\partial \beta} \right|_{V,N}$$

Continuing with the Eq. of state,

$$P = \rho T e^{\rho/\rho_0} - a \frac{\rho^2}{\rho_0}.$$

(b) Find the critical density, ρ_c , the critical temperature T_c and the critical pressure P_c . State your answers in terms of a and ρ_0 .