Physics 831 Quiz #9 - Wednesday, Nov. 5

YOUR NAME:_____

Consider the 1-d ising model on $N \to \infty$ spins, where each spin can have $\sigma_i = \pm 1$ and the Hamiltonian is:

$$H = -\sum_{i} J\sigma_i \sigma_{i+1} - \mu B\sigma_i,$$

and the partition function is given by:

$$\ln Z = N \ln(\lambda), \ \lambda = e^{\beta J} \cosh(\beta \mu B) + \sqrt{e^{2\beta J} \sinh^2(\beta \mu B)} + e^{-2\beta J}.$$

- 1. Consider the case where J = 0.
 - (a) What is the average spin per $\langle \sigma \rangle$ as a function of μB and T?
 - (b) What is the fluctuation of the net spin (assume N spins)? The fluctuation is defined as:

$$F = \frac{1}{N} \left\langle \left(\sum_{i} \sigma_{i} \right)^{2} \right\rangle - \frac{1}{N} \left\langle \sum_{i} \sigma_{i} \right\rangle^{2}$$

2. Consider the case where $J \neq 0$ and $\mu B = 0$. Derive the probability that the first n spins are +1 while the n^{th} spin is -1.