1. Suppose someone has calculated the coefficients, B_{i}, in the following expression for the grand canonical partition function,

$$
\frac{P}{T}=\frac{1}{V} \ln Z=\rho_{0}\left(B_{1} e^{\beta \mu}+B_{2} e^{2 \beta \mu}+B_{3} e^{3 \beta \mu} \ldots\right),
$$

where $B_{1}=1$, and B_{i} are functions of T, i.e., they don't depend on μ.
(a) Find the coefficients, C_{i}, for $i=1,2,3$, in an expansion of the density,

$$
\rho=\rho_{0}\left(C_{1} e^{\beta \mu}+C_{2} e^{2 \beta \mu}+C_{3} e^{3 \beta \mu} \ldots\right) .
$$

Express C_{i} in terms of B_{i}.
(b) Consider the virial expansion,

$$
P=\rho T\left(1+A_{2} \frac{\rho}{\rho_{0}}+A_{3} \frac{\rho^{2}}{\rho_{0}^{2}}+\cdots\right)
$$

Express A_{2} in terms of $B_{1}, B_{2} \cdots$.
2. Consider the isotherm (fixed temperature) on the $P-V$ diagram below. List all pairs of points that coexist at equilibrium.

3. A brilliant colleague of yours derives a coexistence curve by plotting an isobar (constant pressure) in a T vs. x graph. She states that the coexistence condition is that the shaded areas above and below the lines are equal. If she is correct, what was the intrinsic quantity x ? For example, x might be $\rho, \rho / T, S / V$, the free energy density \cdots Hint: $T d S=d E+P d V-\mu d N, T S=E+P V-\mu N$.

