Physics 831 Quiz #11 - Friday, Nov. 21

YOUR NAME:_____

1. Consider the following form for the free-energy density for a spin system where the σ can be between -1 and +1:

$$f(\sigma, T) = \rho_0 \left\{ \mathcal{V}(\sigma, T) + \frac{\kappa}{2} (\nabla \sigma)^2 \right\},$$

$$\mathcal{V}(\sigma, T) = -\frac{1}{2} J \sigma^2 + T \frac{(1+\sigma)}{2} \ln\left(\frac{1+\sigma}{2}\right) + T \frac{(1-\sigma)}{2} \ln\left(\frac{1-\sigma}{2}\right).$$

Fill in either *increase* or *decrease* for the following statements concerning the surface energy between a region where the spins have minimized f with $\sigma > 0$ and a separate region where $\sigma < 0$.

- (a) The surface energy will _____ if κ is increased.
- (b) The surface energy will _____ if J is increased.
- (c) The surface energy will _____ if T is increased (but kept less than T_c).
- 2. Two phase transitions have different critical exponents. You can safely conclude, (circle all correct answers)
 - They come from different universality classes
 - They have different dimensionalities
 - They have different order parameters
- 3. In a two-dimensional ferromagnetic substance, spins become aligned when the temperature is lowered below the critical temperature, even though the material is in a field-free region. This is an example of: (circle all correct answers)
 - spontaneous symmetry breaking
 - explicit symmetry breaking
 - breaking a continuous symmetry
 - breaking a discrete symmetry

4. Assume the free energy for a complex field in ONE dimensions is given by:

$$F = \int dx \frac{1}{2} \left(A \left| \phi \right|^2 + \kappa \left| \partial_x \phi \right|^2 \right).$$

Define the correlation Γ as

$$\Gamma(x) \equiv \langle \phi^*(0)\phi(x) \rangle.$$

Fourier transforms in one dimensions are defined by:

$$\tilde{\phi}_k \equiv \frac{1}{\sqrt{L}} \int dx \ e^{ikx} \phi(x), \qquad \phi(x) = \frac{1}{\sqrt{L}} \sum_k e^{-ikx} \phi_k.$$

- (a) Calculation $\Gamma(x)$.
- (b) What is the critical exponent ν ? The correlation length ξ behaves as $\xi \sim t^{-\nu}$ as $t = (T - T_c)/T_c \rightarrow 0$.

5. The grand canonical partition function for a system of charged particles,

$$Z = \mathrm{Tr}e^{-\beta H + \beta \mu Q}.$$

is given by:

$$\ln Z = A(T)\cosh(\mu/T).$$

In terms of μ , T, A, and derivatives of A,

- (a) What is the average charge $\langle Q \rangle$?
- (b) What is the fluctuation of the charge $\langle Q^2 \langle Q \rangle^2 \rangle$?