Physics 831 Quiz \#10-Friday, Nov. 14

YOUR NAME:

1. The diagram represents a perturbative calculation of the partition function.

(a) Consider the connected diagram involving $p_{a} \rightarrow p_{d}$. When calculating the pressure, this diagram contributes to order $n=$ \qquad in perturbation theory.
(b) When performing a virial expansion (see expansion below), the lowest m for which this contributes to A_{m} is \qquad .
2. Consider a virial expansion for a non-relativistic ONE-dimensional gas of spin-zero bosons of mass m at temperature T,

$$
\frac{P}{\rho T}=1+\sum_{m=2}^{\infty} A_{m}\left(\frac{\rho}{\rho_{0}}\right)^{m-1}, \quad \rho_{0} \equiv \frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} d p e^{-p^{2} / 2 m T} .
$$

Ignoring interactions between the particles, calculate A_{2}. Here ρ is the number per unit length. Begin with the expression for the one-dimensional "pressure", and the density

$$
\begin{gathered}
\frac{P L}{T}=\ln Z=\frac{L}{2 \pi \hbar} \int_{-\infty}^{\infty} d p \ln \left(\frac{1}{1-e^{-\beta\left(p^{2} / 2 m-\mu\right)}}\right), \\
\rho=\frac{1}{L} \frac{\partial}{\partial \beta \mu} \ln Z .
\end{gathered}
$$

3. Consider the state:

$$
|\eta\rangle=e^{\left(\eta a^{\dagger}-\eta^{*} a\right)}|0\rangle .
$$

Find the overlap $\langle 0 \mid \eta\rangle$.
Hint: you may want to use the Campbell-Baker-Hausdorff lemma - If operators A and B commute to a number,

$$
e^{A+B}=e^{A} e^{B} e^{-[A, B] / 2}
$$

