1. A box has a gas of oxygen molecules (mass-32) and hydrogen molecules (mass-2) in equal number densities. Particles are radiated through a small hole in the box for a short time. The ratio of emitted oxygen per emitted hydrogen molecules $\left(N_{O} / N_{H}\right)$ is:
a) $1 / 256$
b) $1 / 16$
c) $1 / 4$
d) 1 to 1
e) 4
f) 16
g) 256

Assume all phase space densities are sufficiently low to warrant Boltzmann statistics (not Bose or Fermi).
2. Consider a one dimensional box of length $L, 0<x<L$, filled with a liquid into which perfume molecules are dissolved, where the initial density, ρ_{0}, of perfume molecules is uniform throughout the box. At time $t=0$, an electrified grid is turned on at the surface that captures all perfume molecules that happen to wander into the boundary $(x=0$ or $x=L)$ of the box. The molecules move according to the diffusion equation,

$$
\frac{\partial \rho}{\partial t}=D \frac{\partial^{2} \rho}{\partial x^{2}}
$$

where D is the diffusion constant describing the motion of the perfume molecules.
(a) Find the Fourier coefficients, $A_{m}(t=0)$, such that the initial density is expressed as a sum:

$$
\rho(x, t)=\rho_{0} \sum_{m=1, \infty}^{\infty} A_{m}(t) \sin (m \pi x / L)
$$

(b) Using the diffusion equation, solve for the time dependence of the coefficients $A_{m}(t)$.

Fun Facts to know and tell: For a function F defined between $x=0$ and $x=L$,

$$
\begin{aligned}
F(x) & =\sum_{m=1}^{\infty} F_{m} \sin (m \pi x / L), \\
F_{m} & =\frac{2}{L} \int_{0}^{L} F(x) \sin (m \pi x / L)
\end{aligned}
$$

