1. Beginning with:

$$
d E=T d S-P d V+\mu d N
$$

derive the Maxwell relation:

$$
\left.\frac{\partial S}{\partial V}\right|_{T, N}=\left.\frac{\partial P}{\partial T}\right|_{V, N} .
$$

2. For a non-relativistic three-dimensional gas at low-density, show that the entropy per particle is:

$$
\frac{S}{N}=\frac{5}{2}+\ln \left\{\frac{(m T)^{3 / 2} V}{(2 \pi)^{3 / 2} \hbar^{3} N}\right\}
$$

Begin with:

$$
\langle E / N\rangle=(3 / 2) T, \quad S=\ln Z_{C}+\beta\langle E\rangle, \quad Z_{C}(N, T)=\frac{z^{N}}{N!},
$$

where z is the canonical partition function of a single particle of mass m in a volume V.
3. Using the information above, derive an expression for S / N in terms of V, N and T for the Van der Waals equation of state,

$$
P=\frac{\rho T}{1-\rho / \rho_{s}}-a \rho^{2} .
$$

Write your result in a form that illustrates how S / N depends on the "excluded" volume.
4. Consider the isotherm (fixed temperature) on the $P-V$ diagram below. List all pairs of points that coexist at equilibrium.

