Physics 831 Quiz \#10 - Friday, Nov. 9
YOUR NAME:

1. The diagram represents a perturbative calculation of the partition function.

Consider the connected diagram involving $p_{a} \rightarrow p_{d}$ which when used to calculate the pressure contributes at order n in perturbation theory and to to order m in powers of $e^{\beta \mu}$, i.e., the prefactor is $e^{m \beta \mu}$. Circle one of the below:

$n=4, m=4$	$n=4, m=5$	$n=4, m=12$
$n=5, m=4$	$n=5, m=5$	$n=5, m=12$
$n=12, m=4$	$n=12, m=5$	$n=12, m=12$
none of the above		

2. Consider a virial expansion for a non-relativistic two-dimensional gas of spin-zero bosons of mass m at temperature T,

$$
\frac{P}{\rho T}=1+\sum_{m=2}^{\infty} A_{m}\left(\frac{\rho}{\rho_{0}}\right)^{m-1}, \quad \rho_{0} \equiv \frac{m T}{2 \pi \hbar^{2}} .
$$

Ignoring interactions between the particles, calculate A_{2}.
3. Consider two states:

$$
|\alpha\rangle=e^{\alpha a^{\dagger}}|0\rangle, \quad|\beta\rangle=e^{\beta a^{\dagger}}|0\rangle .
$$

Find the overlap, $\langle\alpha \mid \beta\rangle$.

