- 1. Consider two single-particle levels of energy $-\epsilon$ and ϵ , which are populated by three electrons (each of which can be either spin-up or spin down). The system is then attached to a heat bath characterized by a temperature T. In terms of T and ϵ , find
 - (a) the average energy
 - (b) the $T \to 0$ limit of (a)
 - (c) the $T \to \infty$ limit of (a)
 - (d) the entropy
 - (e) the $T \to 0$ limit of (d)
 - (f) the $T \to \infty$ limit of (d)
- 2. Consider two single-particle levels of energy $-\epsilon$ and ϵ , which can be populated by indistinguishable spin-zero bosons. The system is attached to a bath that can exchange particles and energy and is characterized by a temperature T and a chemical potential μ . In terms of μ, T and ϵ , find (assume $\mu < -\epsilon$)
 - (a) an expression for the average number of particles.
 - (b) the $T \to 0$ limit of (a)
 - (c) the $T \to \infty$ limit of (a)
- 3. Beginning with the grand canonical partition function $Z_{GC}(\alpha = -\beta \mu, \beta, V)$, derive an expression for the specific heat at constant volume, $C_V \equiv dE/dT|_{N,V}$ in terms of derivatives of Z_{GC} .
- 4. Beginning with:

$$TdS = dE + PdV - \mu dQ,$$

prove:

$$\left. \frac{\partial E}{\partial \mu} \right|_{V,T} = T \left. \frac{\partial Q}{\partial T} \right|_{V,\beta\mu}$$