1. Consider an independent spin whose values are either $\sigma_i = +1$ or -1. Beginning with the definition of entropy,

$$S = -\sum_{\ell} p_{\ell} \ln p_{\ell},$$

where p_{ℓ} is the probability of a given level ℓ being occupied:

- (a) Find S in terms of $\langle \sigma \rangle$.
- (b) Assuming the spins have an interaction energy per spin,

$$E/N = -\frac{J}{2} \langle \sigma \rangle^2,$$

Derive an expression for $\langle \sigma \rangle$ that minimizes the free energy, F = E - TS.

- (c) How does your expression compare to the one given in the notes, $\langle \sigma \rangle = \tanh(\beta J \langle \sigma \rangle)$. If different, explain what physical assumptions are driving the difference.
- 2. Suppose one has calculated a partition function,

$$Z = \text{Tr } e^{-\beta H}, \quad H = SCF(T) - \mu \vec{B} \cdot \vec{S},$$

where SCF is some complicated function of the temperature and \vec{S} is the net spin of the system. Further assume that after performing all the fancy calculations that

 $\ln Z = N \left\{ a_1 \ln[a_2 \cosh(a_3 \beta \mu B)] \right\},\$

where a_1, a_2 and a_3 are functions of the temperature, and N is the number of sites.

- (a) Find the average spin per site as a function of β , μB , a_1 , a_2 , and a_3
- (b) In terms of a_1 , a_2 , a_3 and β , what is the average spin per site for
 - i. B = 0ii. $B = \infty$