1. Beginning with the fact that the number of ways to arrange N_s systems into the levels i = 1, 2...m is:

$$I = \frac{N_s!}{n_1! n_2! \cdots n_m!},$$

where n_i is the number of systems in state *i*, show that the entropy defined as:

$$S \equiv \frac{1}{N_s} \ln I = -\sum_i p_i \ln p_i, \text{ where } p_i \equiv n_i / N_s.$$

In the proof, assume $N_s \to \infty$ and use Stirlings formula, $\ln N! \approx N \ln N - N \cdots$.

- 2. Consider two single-particle levels of energy $-\epsilon$ and ϵ , which can be populated by indistinguishable Fermions. The system is attached to a bath that can exchange particles and energy and is characterized by a temperature T and a chemical potential μ . In terms of μ, T and ϵ , find
 - (a) an expression for the average number of particles.
 - (b) the T = 0 limit of (a)
 - (c) the $T = \infty$ limit of (a)
- 3. Beginning with:

$$TdS = dE + PdV - \mu dQ,$$

prove:

$$\left.\frac{\partial T}{\partial \mu}\right|_{V,S} = - \left.\frac{\partial Q}{\partial S}\right|_{V,\mu}$$