Physics 831 Quiz \#1-Friday, Sep. 8

1. Beginning with the fact that the number of ways to arrange N_{s} systems into the levels $i=1,2 \ldots m$ is:

$$
I=\frac{N_{s}!}{n_{1}!n_{2}!\cdots n_{m}!},
$$

where n_{i} is the number of systems in state i, show that the entropy defined as:

$$
S \equiv \frac{1}{N_{s}} \ln I=-\sum_{i} p_{i} \ln p_{i}, \quad \text { where } p_{i} \equiv n_{i} / N_{s}
$$

In the proof, assume $N_{s} \rightarrow \infty$ and use Stirlings formula, $\ln N!\approx N \ln N-N \cdots$.
2. Consider two single-particle levels of energy $-\epsilon$ and ϵ, which can be populated by indistinguishable Fermions. The system is attached to a bath that can exchange particles and energy and is characterized by a temperature T and a chemical potential μ. In terms of μ, T and ϵ, find
(a) an expression for the average number of particles.
(b) the $T=0$ limit of (a)
(c) the $T=\infty$ limit of (a)
3. Beginning with:

$$
T d S=d E+P d V-\mu d Q
$$

prove:

$$
\left.\frac{\partial T}{\partial \mu}\right|_{V, S}=-\left.\frac{\partial Q}{\partial S}\right|_{V, \mu}
$$

