$$
\begin{aligned}
\int_{0}^{\infty} d x \frac{x^{n-1}}{e^{x}-1}= & \Gamma(n) \zeta(n), \quad \int_{0}^{\infty} d x \frac{x^{n-1}}{e^{x}+1}=\Gamma(n) \zeta(n)\left[1-(1 / 2)^{n-1}\right], \\
\zeta(n) \equiv & \sum_{m=1}^{\infty} m^{-n}, \quad \Gamma(n) \equiv(n-1)!, \\
\zeta(3 / 2)= & 2.612375 \ldots, \quad \zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(3)=1.20205 \ldots, \quad \zeta(4)=\frac{\pi^{4}}{90}, \\
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \quad \int_{0}^{\infty} d x x^{n} e^{-x}=n!
\end{aligned}
$$

1. Consider the virial expansion,

$$
P=\rho T+\rho T \sum_{n=2, \ldots} A_{n}\left(\frac{\rho}{\rho_{0}}\right)^{n-1} .
$$

For a gas of identical non-interacting bosons, A_{2} is: (circle one)

greater than zero zero less than zero

2. A spherically symmetric molecule developed by super scientists at the prestigious University of Notre Dame has mass m and breathing mode excitations of $n \hbar \omega$, i.e., each mode is nondegenerate. Here, $n=0,1,2, \cdots$. A dilute gas of such molecules is kept at temperature T and chemical potential μ. Calculate the number density in terms of $\mu, \beta=1 / T$, m and $\hbar \omega$.
3. Suppose one has calculated a partition function,

$$
Z=\operatorname{Tr} e^{-\beta H}, \quad H=S C F-\mu \vec{B} \cdot \vec{S}
$$

where $S C F$ is some complicated function and \vec{S} is the net spin of the system. Further assume that after performing all the fancy calculations that

$$
\ln Z=N \ln \left[2 e^{z} \cosh (a \beta \mu B)\right],
$$

where a and z are functions of the temperature, and N is the number of sites.
(a) Find the average spin per site $\left\langle S_{z}\right\rangle$ as a function of $\beta, \mu B, a, z$? Assume B points along the z axis.
(b) What is the fluctuation of the spin per site $\left\langle S_{z}^{2}\right\rangle$ when $B=0$?

