YOUR NAME:_____

FUN FACTS TO KNOW AND TELL

$$\begin{split} \int_0^\infty dx \; \frac{x^{n-1}}{e^x - 1} \;\; &= \;\; \Gamma(n)\zeta(n), \quad \int_0^\infty dx \; \frac{x^{n-1}}{e^x + 1} = \Gamma(n)\zeta(n) \left[1 - (1/2)^{n-1} \right], \\ \zeta(n) \;\; &\equiv \;\; \sum_{m=1}^\infty m^{-n}, \;\; \Gamma(n) \equiv (n-1)!, \\ \zeta(3/2) \;\; &= \;\; 2.612375..., \;\; \zeta(2) = \frac{\pi^2}{6}, \;\; \zeta(3) = 1.20205..., \;\; \zeta(4) = \frac{\pi^4}{90}, \\ \int_{-\infty}^\infty dx \; e^{-x^2/2} = \sqrt{2\pi}, \quad \int_0^\infty dx \; x^n e^{-x} = n! \end{split}$$

- 1. (2 pts each) Consider a single electron that can be either spin \uparrow or \downarrow , with the two energies being ϵ or $-\epsilon$.
 - (a) What is the average energy when T = 0?
 - (b) What is the average energy when $T \to \infty$?
 - (c) What is the specific heat when T = 0?
 - (d) What is the specific heat when $T \to \infty$?
 - (e) What is the entropy when T = 0?
 - (f) What is the entropy when $T \to \infty$?

2. (10 pts) Beginning with the fundamental thermodynamic relation, and the definition of the specific heat,

$$TdS = dE + PdV - \mu dN, \quad C_V = T \left. \frac{\partial S}{\partial T} \right|_{N,V},$$

derive the relation:

$$-\frac{1}{T}\frac{\partial C_V}{\partial N}\Big|_{T,V} = \left.\frac{\partial^2 \mu}{\partial T^2}\right|_{V,T}$$

3. (10 pts) Consider a particle moving in a potential well:

 $V(x) = -A\ln(x/x_0) + Bx$, where $(x_0 > 0, A > 0, B > 0)$,

which confines a particle $0 < x < \infty$.

Find $\langle x \rangle$ as a function of A, B, x_0 and the temperature T.

- 4. Massless electrons ($\epsilon = pc$, and can be either spin up or spin down) move in **two dimensions** and equilibrate to a temperature T.
 - (a) (5pts) For T = 0 and chemical potential μ , find the density (number per area) ρ in terms of μ .
 - (b) (5pts) What is $D(\epsilon)$, the density of single particle states?
 - (c) (5pts) To order T^2 , find the change in the chemical potential $\delta\mu$ necessary to maintain constant density. Express answer in terms of μ and T.