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FORWARD

These notes are for the one-semester graduate level statistical mechanics class taught at Michigan
State University. Although they are more terse than a typical text book, they do cover all the
material used in PHY 831. The notes presume a familiarity with basic undergraduate concepts
in statistical mechanics, and with some basic concepts from first-year graduate quantum, such
as harmonic oscillators and raising and lowering operators. Some of the material in Chapter 3
involves time-dependent perturbation theory, which is described in the notes here, but the terse
manner would undoubtedly intimidate students who have never used it before.

Anybody is welcome to use the notes to their heart’s content, though the text should be treated
with the usual academic respect when it comes to copying material. If anyone is interested in
the LATEX source files, they should contact me (prattsc@msu.edu). Solutions to the end-of-chapter
problems are also provided on the course web site http://www.pa.msu.edu/ pratts/phy831.
Please beware that this is a web manuscript, and is thus alive and subject to change at any time.

The quality, such as it is, would have been FAR lower had it not been for the generous and
diligent assistance with which students provided feedback.
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1 Foundation of Statistical Physics

“I know nothing ... nothing” - John Banner

1.1 Ignorance, Entropy and the Ergodic Theorem
Statistical physics is a beautiful subject. Pretty much everything derives from the simple state-
ment that entropy is maximized. Here, we describe the meaning of entropy, and show how the
tenet of maximum entropy is related to time-reversal via the ergodic theorem.

Consider a large number of systems Ns → ∞, each of which can be in some specific quantum
state. Let ni be the number of systems that are in the state i. We will define the ignorance I as a
measure of the number of ways to arrange the systems given n0, n1 · · · .

I =
Ns!

n0!n1! · · ·
, (1.1)

with the constraint that n0 + n1 + · · · = Ns. Our immediate goal is to find ni that maximizes
ignorance while satisfying the constraint. If the observer knows nothing about the population
probabilities, the values ni should be chosen to maximize I . However, before doing so, we will
define S as:

S ≡
1

Ns

ln(I), (1.2)

which will be maximized when I is maximized. By defining it as the log of the ignorance, S will
have the convenient property that the entropy of two independent systems will be the sum of
the entropy of the two systems, because the combined ignorance of two systems would be the
product of the two ignorances, I = I1I2, and the log of a product is the sum. Dividing by Ns

then makes S independent of the number of systems in the large Ns limit. The quantity S is
the entropy, the most fundamental quantity of statistical mechanics. Because it was divided by
the number of systems, one can consider S to be the entropy of an individual system. Using
Stirling’s expansion,

lim
N→∞

lnN ! = N lnN −N + (1/2) lnN + (1/2) ln(2π) + 1/(12N) + · · · , (1.3)

we keep the first two terms to see that

S =
1

Ns

(
Ns lnNs −

∑
i

ni lnni −Ns +
∑
i

ni + · · ·
)

(1.4)

= −
∑
i

pi ln pi asNs →∞,

where pi ≡ ni/Ns is the probability a given system is in state i. AsNs →∞, all terms beyond
the pi ln pi term in Eq. (1.4) vanish. Note that if all the probability is confined to one state, the
entropy will be zero. Furthermore, because for each probability, 0 < pi ≤ 1, the entropy is
always positive.

Our goal is to maximize S. Maximizing a multi-dimensional function (in this case a function
of n0, n1 · · · ) with a constraint is often done with Lagrange multipliers. In that case, one maxi-
mizes the quantity, S−λC(~n), with respect to all variables and with respect to λ. Here, the con-
straintC must be some function of the variables constrained to zero, in our caseC =

∑
i pi−1.

1
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The coefficient λ is called the Lagrange multiplier. Stating the minimization,

∂

∂pi

(
−
∑
j

pj ln pj − λ
[∑

j

pj − 1

])
= 0, (1.5)

∂

∂λ

(
−
∑
j

pj ln pj − λ
[∑

j

pj − 1

])
= 0.

The second expression leads directly to the constraint
∑
j pj = 1, while the first expression leads

to the following value for pi,

ln pi = −λ− 1, or pi = e−λ−1. (1.6)

The parameter λ is then chosen to normalize the distribution, e−λ−1 multiplied by the number
of states is unity. The important result here is that all states are equally probable. This is the
result of stating that you know nothing about which states are populated, i.e., maximizing ig-
norance is equivalent to stating that all states are equally populated. This can be considered as
a fundamental principle – Disorder (or entropy) is maximized. All statistical mechanics derives
from this principle.

ASIDE: REVIEW OF LAGRANGE MULTIPLIERS
Imagine a functionF (x1 · · ·xn) which one minimizes while satisfying a constraintC(x1 · · ·xn) =
0. If one considers a small step, starting from a point where the constraint is satisfied, the change
in C is

δC = ∇C · δ~x.

The functionC will not change for small steps where δ~x is perpendicular to∇C, but will change
for steps parallel to∇C. The gradient of F must vanish for any step normal to∇C for F to be
a minimum on the hyper-surface whereC is a constant. Therefore,∇F must be parallel to∇C.
The constant of proportionality is the Lagrange multiplier λ,

∇F = λ∇C.

The two gradients are parallel if,
∇(F − λC) = 0.

However, this condition (actually n conditions) on its own is not completely sufficient. If one
fixes λ to an arbitrary value, then solves for ~x by solving the parallel-gradients constraint, one
will find a solution to the minimization constraint with C(~x) = some constant, but not zero.
Fixing C = 0 can be accomplished by additionally requiring the condition,

∂

∂λ
(F − λC) = 0.

Putting these together, it appears that F − λC is a function of x1 · · ·xn and λ, and that this
must then be minimized. Thus, the n-dimensional minimization problem with a constraint is
translated into an (n + 1)-dimensional problem, with n + 1 variables and n + 1 conditions.
Here, λ basically appears as the extra variable. It is counter-intuitive to consider “reducing” an

2
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n dimensional minimization problem to a n+ 1 dimensional problem as progress. However, in
this form the first n conditions often become rather trivial to solve in terms of λ. One is then left
with one unknown λ, though that one unknown may be difficult to determine.

1.2 The Ergodic Theorem

The principle of maximizing entropy is related to the Ergodic theorem, which provides the way
to understand why all states are equally populated from the perspective of dynamics. The Er-
godic theorem is built on the symmetry of time-reversal, i.e., the rate at which one changes from
state i to state j is the same as the rate at which one changes from state j to state i. Here, we
can consider a state as a quantum eigenstate of the entire system. All static systems, no matter
how large or how many particles, have eigenstates, even if they are extremely tightly spaced. If
a state is particularly difficult to enter, it is equivalently difficult to exit. Thus, a time average of
a given system will cycle through all states and, if one waits long enough, the system will spend
equal amounts of net time in each state.

This can also be understood by considering an infinite number of systems where each state is
populated with equal probability. For every pair of states i and j, if the rate transitioning from
j to i is equal to the rate for transitioning from i to j, it is clear the probability distribution will
stay uniform. Thus, a uniform probability distribution is stable, if one assumes time reversal.
Here “time reversal” simply means that inverse rates are equal.

Satisfaction of time reversal is sometimes rather subtle. As an example, consider two large iden-
tical rooms, a left room and a right room, separated by a door manned by a security guard. If
the rooms are populated by 1000 randomly oscillating patrons, and if the security guard grants
and denies access with equal probability when going right-to-left vs. left-to-right, the popula-
tion of the two rooms will, on average, be equal. However, if the security guard denies access to
the left room while granting exit of the left room, the population will ultimately skew towards
the right room. This explicit violation of the principle of maximized entropy derives from the
fact that moving left-to-right and right-to-left, i.e. the time reversed motions, are not treated
equivalently.

The same security guard could, in principle, police the traversal of gas molecules between two
partitions of a box. Such paradoxes were discussed by Maxwell, and the security guard is re-
ferred to as Maxwell’s demon. As described by Maxwell,

... if we conceive of a being whose faculties are so sharpened that he can follow every
molecule in its course, such a being, whose attributes are as essentially finite as our own,
would be able to do what is impossible to us. For we have seen that molecules in a vessel full
of air at uniform temperature are moving with velocities by no means uniform, though the
mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform.
Now let us suppose that such a vessel is divided into two portions, A and B, by a division
in which there is a small hole, and that a being, who can see the individual molecules, opens
and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only
the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the

3
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temperature of B and lower that of A, in contradiction to the second law of thermodynamics.

This apparent violation of the second law of thermodynamics was explained by Leó Szilárd in
1929, who argued that the demon would have to expend energy to measure the speed of the
molecules, and thus increase entropy somewhere, perhaps in his brain, thus ensuring that the
entropy of the entire system (gas + demon) increased. Check out
http://en.wikipedia.org/wiki/Maxwell’s_demon.

Previously, we showed that if all one maximizes entropy all states will be equally probable. If
one accepts the converse, that if all states are equally probable one maximizes entropy, then the
Ergodic theorem demonstrates how time reversal leads to the conclusion that entropy should be
maximized.

1.3 Statistical Ensembles

The previous section discussed the manifestations of maximizing ignorance, or equivalently en-
tropy, without regard to any constraints aside from the normalization constraint that probabili-
ties sum to unity. In this section, we discuss the effects of fixing energy and/or particle number
or charge. These additional constraints can be easily incorporated by applying additional La-
grange multipliers. For instance, conserving the average energy can be enforced by adding an
extra Lagrange multiplier β. Maximizing the entropy per system with respect to the probability
pi for being in state i,

∂

∂pi

(
−
∑
j

pj ln pj − λ[
∑
j

pj − 1]− β[
∑
j

pjεj − Ē]

)
= 0, (1.7)

gives
pi = exp(−1− λ− βεi). (1.8)

Thus, the states are populated proportional to the factor e−βεi , which is the Boltzmann distri-
bution, with β being identified as the inverse temperature. Again, the parameter λ is chosen
to normalize the probability. However, a given β only enforces the constraint that the average
energy is some constant, not the particular energy one might wish. Thus, one must adjust β to
find the desired energy, a sometimes time-consuming process.

For any quantity which is conserved on average, one need only add a corresponding Lagrange
multiplier. For instance, a multiplier α could be used to restrict the average particle number or
charge. The probability for being in state iwould then be:

pi = exp(−1− λ− βεi − αQi). (1.9)

Typically, the chemical potential µ is used to reference the multiplier,

α = −µ/T. (1.10)

The chargeQi could refer to the baryon number, electric charge, or any other conserved quantity.
It could be either positive or negative. If there are many conserved charges, Q can be replaced
by ~Q and µ can be replaced by ~µ.

4
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Rather than enforcing the last Lagrange multiplier constraint, that derivatives w.r.t. the mul-
tiplier are zero, we are often happy with knowing the solution for a given temperature and
chemical potential. Inverting the relation to find values of T and µ that yield specific values of
the energy and particle number is often difficult, and usually it is the temperature and chemi-
cal potentials that are effectively fixed in many physical situations. In the coming subsections
we show how this definition of temperature and chemical potential as Lagrange multipliers are
equivalent to the familiar thermodynamic definitions.

In most textbooks, the charge is replaced by a number N . This is fine if the number of particles
is conserved such as a gas of Argon atoms. However, the system could include complicated
chemical reactions, or multiple conserved charges. For instance, both electric charge and baryon
number are conserved in the hadronic medium in the interior of a star. The charges Qi and
the associated Lagrange multipliers, αi, might then be thought of as components of a vector.
Positrons and electrons clearly contribute to the charge with opposite signs.

In the early universe there were nearly equal numbers of particles and anti-particles. This leads
to the chemical potentials vanishing, but the average number of positrons, or of electrons, would
be large. If the system is strongly interacting, counting the number of electrons or positrons
can be problematic, because states can be composed of coherent combinations of electrons and
positrons. For example, a photon has e+e− contributions to its composition once it becomes
off-shell. Thus counting electrons becomes a poorly defined enterprise, but the net charge,
i.e. the number of positive quanta minus the number of negative quanta, is conserved and is
indeed well defined. One should only associate Lagrange multipliers with conserved quanti-
ties, with the definition of "conservation" depending on the relevant time scale. For example a
low-temperature gas of lead atoms can be treated as if the number of lead atoms is conserved.
However if one waits for time much greater than the age of the universe, those lead atoms will
undergo radioactive decay. But for observations at reasonable time scales the number of lead
atoms can be considered a conserved quantity.

One could imagine a system with different molecules undergoing chemical reactions. Each
molecule would have a different number of atoms of a given type. The number of each type of
atom would represent an independently observed charge, but the number of molecules would
not be conserved. Without apology, these notes will switch between using N or Q depending
on the context.

In statistical mechanics one first considers which quantities one wishes to fix, and which quan-
tities one wishes to allow to vary (but with the constraint that the average is some value). This
choice defines the ensemble. The three most common ensembles are the micro-canonical, canon-
ical and grand-canonical. The ensembles differ by which quantities vary, as seen in Table 1. If a
quantity is allowed to vary, then a Lagrange multiplier determines the average quantity for that
ensemble.

Ensemble Energy Charges
micro-canonical fixed fixed

canonical varies fixed
grand canonical varies varies

Table 1: Ensembles vary by what quantity is fixed and what varies.

5
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1.4 Partition Functions

Whereas maximizing entropy represents the central concept of statistical physics, partition func-
tions provide the principal calculational workhorse.

Because probabilities are proportional to e−βεi−αQi , the normalization requirement can be ab-
sorbed by a factor 1/Z:

pi =
1

Z
e−βεi−αQi, (1.11)

Z =
∑
i

e−βεi−αQi,

whereZ is referred to as the partition function. Partition functions are convenient for calculating
the average energy or charge,

〈E〉 =

∑
i εie

−βεi−αQi

Z
(1.12)

= −
∂

∂β
lnZ,

= T 2
∂

∂T
lnZ (fixed α = −µ/T ),

〈Q〉 =

∑
iQie

−βεi−αQi

Z
(1.13)

= −
∂

∂α
lnZ,

= T
∂

∂µ
lnZ (fixed T ).

The partition function can also be related to the entropy, but in a way that varies with the choice
of ensemble. In the grand canonical ensemble,

S = −
∑
i

pi ln pi =
∑
i

pi(lnZ + βεi + αQi) (1.14)

= lnZ + β〈E〉+ α〈Q〉,

which is derived using the normalization condition,
∑
pi = 1, along with Eq. (1.11).

Example 1.1:
Consider a 3-level system with energies−ε, 0 and ε. As a function of T find:
(a) the partition function, (b) the average energy, (c) the entropy
The partition function is:

Z = eε/T + 1 + e−ε/T , (1.15)

and the average energy is:

〈E〉 =

∑
i εie

−εi/T

Z
= ε
−eε/T + e−ε/T

Z
. (1.16)

6
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At T = 0, 〈E〉 = −ε, and at T =∞, 〈E〉 = 0.
The entropy is given by:

S = lnZ + 〈E〉/T = ln(eε/T + 1 + e−ε/T ) +
ε

T

−eε/T + e−ε/T

eε/T + 1 + e−ε/T
, (1.17)

and is zero for T = 0 and becomes ln 3 for T = ∞. The infinite temperature limit can be
understood by remembering that, in the limit that states are equally populated, the entropy is
the logarithm of the number of states.

Example 1.2:
Consider two single-particle levels whose energies are−ε and ε. Into these levels, we place two
electrons (no more than one electron of the same spin per level). As a function of T find:
(a) the partition function, (b) the average energy, (c) the entropy.

First, we enumerate the system states, where "system state" refers to a configuration of the entire
system. We can have one state with both electrons in the lower level, one state where both
electrons are in the higher level, and four states with one electron in the lower level and one in
the higher level. These four states differ based on whether the electrons are in the ↑↑, ↑↓, ↓↑, or
↓↓ configurations. The partition function is:

Z = e2ε/T + 4 + e−2ε/T , (1.18)

and the average energy is:

〈E〉 =

∑
i εie

−εi/T

Z
= 2ε

−e2ε/T + e−2ε/T

Z
. (1.19)

At T = 0, 〈E〉 = −2ε, and at T =∞, 〈E〉 = 0.
The entropy is given by:

S = lnZ + 〈E〉/T = ln(e2ε/T + 4 + e−2ε/T ) +
2ε

T

−e2ε/T + e−2ε/T

e2ε/T + 4 + e−2ε/T
, (1.20)

and is zero for T = 0 and becomes ln 6 for T =∞.

With problems such as these, you need to very carefully differentiate between single-particle
levels and system levels, as only the latter appear in the sum for the partition function.

1.5 Thermal Traces

The examples thus far are based on the assumption that one knows the eigenstates of the Hamil-
tonian and the Charge operators. Each state in the sum had an energy Ei and a fixed charge qi.
The average of some operator, which in quantum mechanics would be expressed as a matrix, is

〈A〉 =
1

Z

∑
i

Aiie
−βEi−αqi, (1.21)

Z =
∑
i

e−βEi−αqi.

7
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However, there are times when the eigenstates of the HamiltonianH and the charge operatorQ
are not known. In that case we writeH − µQ as an operator and

〈A〉 =
1

Z
TrAe−β(H−µQ), (1.22)

Z = Tr e−β(H−µQ).

The trace of an operatorO,

TrO =
∑
a

Oaa, (1.23)

is unchanged by unitary transformations,

TrO =
∑
abcde

U−1
ab UbcOcdU

−1
de Uea (1.24)

=
∑
bcde

UbcOcdU−1
de

∑
a

UeaU
−1
ab

= Tr UOU−1 = TrO′,

where O′ is simply O in the new basis, and in our case O = Ae−β(H−µQ). Because O is
Hermitian, there is some primed basis where it is diagonalized and the partition function is
clearly equal to the trace. Then, because the trace can be performed in any basis, as long asH −
µQ is expressed in the new basis, the partition function can be written as a trace, independent
of basis. This does not imply that taking into account non-diagonal elements of H − µQ is
easy! In the next chapter, we consider non-interacting particles and diagonalization is relatively
trivial because eigenstates are products of momentum states. For interactions, one introduces
non-diagonal terms into H − µQ and accounting for these terms is usually extremely difficult
and requires some strategy such as perturbation theory or lattice gauge theory. The array of such
approaches are generally referred to as “many-body theory”.

1.6 Thermodynamic Potentials and Free Energies

Because logs of the partition functions are useful quantities, they are often directly referred to
as thermodynamic potentials or as free energies. For the case where both the charge and energy
are allowed to vary, the potential is referred to as the grand canonical potential,

ΩGC ≡ −T lnZGC = 〈E〉 − µ〈Q〉 − TS, (1.25)

which is merely a restating of Eq. (1.14). Here, the subscript GC denotes that it is the grand
canonical potential, sometimes called the “grand potential”. This differs from the canonical case,
where the energy varies but the charge is fixed (only states of the same charge are considered).
For that case there is no µQ/T term in the argument of the exponentials used for calculating
the partition funciton. For the canonical case, the analog of the potential is the Helmholtz free
energy,

F ≡ −T lnZC = 〈E〉 − TS. (1.26)

8
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For the grand potential and the Helmholtz free energy, the signs and temperature factors are
unfortunate as the definitions are historical in nature. Additionally, one might consider the mi-
crocanonical case where energy is strictly conserved. In this case, one only considers the entropy.

The choice of canonical vs. grand canonical vs. micro-canonical ensembles depends on the spe-
cific problem. Micro-canonical treatments tend to be more difficult and are only necessary for
small systems where the fluctuations of the energy in a heat bath would be of the same order as
the average energy. Microcanonical treatments are sometimes used for modestly excited atomic
nuclei. Canonical treatments are useful when the particle number is small, so that fluctuations of
the particle number are similar to the number. Highly excited light nuclei are often treated with
canonical approaches, allowing the energy to fluctuate, but enforcing the absolute conservation
of particle number. Usually, calculations are simplest in the grand canonical ensemble. In prin-
ciple, the grand canonical ensemble should only be used for a system in contact with both a heat
bath and a particle bath. However, in practice it becomes well justified for a system of a hundred
particles or more, where the excitation energy exceeds several times the temperature. Heavier
nuclei can often be justifiably treated from the perspective of the grand canonical ensemble.

The various ensembles can be related to one another. For instance, if one calculates the entropy
in the microcanonical ensemble, S(E,Q), one can derive the Helmholtz free energy F (T,Q),
by first calculating the density of states ρ(E). If the microcanonical entropy was calculated for
states within a range δE, the density of states would be expressed as

ρ(Q,E) =
eS(Q,E)

δE
, (1.27)

from which one could calculate the Helmholtz free energy,

F (Q, T ) = −T lnZC = −T ln

∫
dE ρ(Q,E)e−E/T . (1.28)

Finally, the grand canonical potential can be generated from F ,

ΩGC(µ/T, T ) = T lnZGC = T ln

{∑
Q

e−F (Q,T )/TeµQ/T

}
. (1.29)

It is tempting to relate the various ensembles through the entropy. For instance, one could cal-
culate 〈E〉 and 〈Q〉 in a grand canonical ensemble from lnZGC as a function of µ and T , then
calculate the entropy from Eq. (1.25). One could then use the value of S to generate the F in Eq.
(1.26). However, the entropies in Eq.s (1.25) and (1.26) are not identical for small systems, but
do become identical for large systems. This difference derives from the fact that more states are
available if the charge or energy is allowed to fluctuate.

In addition to charge and energy, thermodynamic quantities can also depend on the volume V
of the system, which is assumed to be fixed for all three of the ensembles discussed above. The
dependence of the thermodynamic potentials on the volume defines the pressure. In the grand
canonical ensemble, the pressure is

P (µ, T, V ) ≡ −
∂

∂V
ΩGC(µ/T, T, V ). (1.30)

9
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For large systems, those where the dimensions are much larger than the range of any interaction
or correlations, the potential ΩGC is proportional to the volume and P = −ΩGC/V . In this
case,

PV = T lnZGC = TS − E + µQ, (1.31)

and the pressure plays the role of a thermodynamic potential for the grand canonical ensem-
ble. However, one should remember that this is only true for the bulk limit with no long-range
interactions or correlations.

1.7 Thermodynamic Relations

It is straightforward to derive thermodynamic relations involving expressions for the entropy in
the grand canonical ensemble in Eq. (1.25) and the definition of the pressure, Eq. (1.31),

S = lnZGC(µ/T, T, V ) + E/T − (µ/T )Q,

dS =

(
∂ lnZGC

∂T
−
〈E〉
T 2

)
dT +

(
∂ lnZGC

∂(µ/T )
− 〈Q〉

)
d(µ/T ) +

P

T
dV +

dE

T
−
µdQ

T
,

TdS = PdV + dE − µdQ.

Here, Eq.s (1.12) and (1.13) were used to eliminate the first two terms in the second line. This is
probably the most famous thermodynamic relation. For one thing, it demonstrates that if two
systems a and b are in contact and can trade energy or charge, or if one can expand at the other’s
expense, i.e.,

dEa = −dEb, dQa = −dQb, dVa = −dVb, (1.32)

that entropy can be increased by the transfer of energy, particle number or volume, if the tem-
peratures, chemical potentials or pressures are not identical.

dSa + dSb =

(
Pa

Ta
−
Pb

Tb

)
dVa +

(
1

Ta
−

1

Tb

)
dEa −

(
µa

Ta
−
µb

Tb

)
dQa. (1.33)

If not blocked, such transfers will take place until the temperatures, pressures and chemical
potentials are equal in the two systems. At this point equilibrium is attained.

From the expression for the energy in terms of partition functions,

〈E〉 =

∑
i εie

−εi/T+µiQi/T∑
i e
−εi/T+µiQi/T

, (1.34)

one can see that energy rises monotonically with temperature because higher temperatures give
higher relative weights to states with higher energy. Thus, as energy moves from a higher tem-
perature system to a lower temperature system, the temperatures will approach one another.
This is no less than the second law of thermodynamics, i.e., stating that heat only moves sponta-
neously from hot to cold is equivalent to stating that entropy must increase. Similar arguments
can be made for the charge and pressure, as charge will spontaneously move to regions with
lower chemical potentials, and higher pressure regions will expand into lower density regions.

Equation (1.32) also shows why the definition of pressure as ∂V (ln TZGC) indeed agrees with
the usual definition of pressure, dE = −PdV at fixed entropy.

10
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1.8 What to Minimize... What to Maximize

For many problems in physics, there are parameters which adjust themselves according to ther-
modynamic considerations such as maximizing the entropy. For instance, in a neutron star the
nuclear mean field might adjust itself to minimize the free energy, or a liquid might adjust its
chemical concentrations. Here, we will refer to such a parameter as x, and discuss how thermo-
dynamics can be used to determine x.

For a system at fixed energy, one would plot the entropy as a function of x, S(x,E, V,Q) and
find the value for x at which the entropy would be maximized. If the system is connected to a
heat bath, where energy was readily exchanged, one would also have to consider the change of
the entropy in the heat bath. For a system a,

dStot = dSa + dSbath = dSa − dEa/T, (1.35)

where the term dEa/T describes the entropy change of the heat bath. The total entropy would
be maximized when dStot would be zero for changes dx. Stating that dStot = 0 is equivalent to
stating that dFa = 0 at fixed T ,

dFa = d(Ea − TSa) = −T (dSa − dEa/T ), (1.36)

where Fa = Ea − TSa is the Helmholtz free energy of system a,

dStot|T,Q,V = −
1

T
dFa|T,Q,V = 0. (1.37)

Thus, if a system is in contact with a heat bath at temperature T , the value of x adjusts itself to
minimize (because the entropy comes in with the opposite sign) F (x, T, V,Q). If charges are
also allowed to enter/exit the system with a bath at chemical potential µ, the change in entropy
is

dStot = dSa − dEa/T + µadQa/T = 0. (1.38)

Here, stating that dStot = 0 is equivalent to stating,

dStot|T,V,µ = d(Sa − βEa + βµQa)|T,V,µ = d
PV

T

∣∣∣∣
T,V,µ

= 0, (1.39)

Thus, at fixed chemical potential and temperature a system adjusts itself to maximize the pres-
sure.

The calculations above assumed that the volume was fixed. In some instances, the pressure and
particle number might be fixed rather than the chemical potential and volume. In that case,

dStot = dSa − dEa/T − βPdVa = 0. (1.40)

This can then be stated as:

d(Sa − βEa − βPVa) |T,Q,P = −βd(µQ) = 0. (1.41)

Here, the term µQ is referred to as the Gibb’s free energy,

G ≡ µQ = E + PV − TS. (1.42)

Summarizing the four cases discussed above:

11
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Figure 1.1: The free energy has a minimum at non-zero
〈φ〉 at T = 0. In such circumstances a condensed field
forms, as is the case for the Higg’s condensate for the
electroweak transition or the scalar quark condensate for
the QCD chiral transition. At high temperature, the min-
imum moves back to 〈φ〉 = 0. If 〈φ〉 is discontinuous
as a function of T , a phase transition ensues. If 〈φ〉 is
multidimensional, i.e., φ has two components with rota-
tional symmetry, the transition violates symmetry and is
referred to a spontaneous symmetry breaking. Such po-
tentials are often referred to as “mexican hat” potentials.

• If E, V andQ are fixed, x is chosen to maximize S(x,E, V,Q).

• If Q and V are fixed, and the system is connected to a heat bath, x is chosen to minimize
F (x, T, V,Q).

• If the system is allowed to exchange charge and energy with a bath at chemical potential µ
and temperature T , x is chosen to maximize P (x, T, µ, V ) (or ΩGC in the case that there
are long range correlations or interactions).

• If the charge is fixed, but the volume is allowed to adjust itself at fixed pressure, the system
will attempt to minimize the Gibb’s free energy,G(x, T, P,Q).

Perhaps the most famous calculation of this type concerns the electroweak phase transition
which purportedly took place in the very early universe, 10−12 s after the big bang. In that
transition the Higg’s condensate 〈φ〉 became non-zero in a process called spontaneous symme-
try breaking. The free energy can be calculated as a function of 〈φ〉 (Search literature of 1970s
by Jackiw, Coleman and Linde). The resulting free energy depends on T and 〈φ〉, as illustrated
qualitatively in Fig. 1.1.

1.9 More about Free Energies

Perusing the literature, one is likely to find mention of several free energies. For macroscopic
systems without long-range interactions one can write the grand potential as −PV . The other
common free energies can also be expressed in terms of the pressure as listed below:

In the grand canonical ensemble, one finds the quantities E and Q by taking derivatives of the
grand potential w.r.t. the Lagrange multipliers. Similarly, one can find the Lagrange multipliers
by taking derivatives of some of the other free energies with respect to Q or E. To see this we
begin with the fundamental thermodynamic relation,

TdS = dE + PdV − µdQ. (1.43)

Because the Helmholtz free energy is usually calculated in the canonical ensemble,

F = −T lnZC(Q, T, V ) = E − TS, (1.44)

12
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Grand Potential Ω = −PV = E − µQ− TS
Helmholtz Free Energy F = E − TS = µQ− PV

Gibb’s Free Energy G = µQ = E + PV − TS
Enthalpy∗ H = E + PV = TS + µQ

Table 2: Various free energies
∗Enthalpy is conserved in what is called a Joule-Thomson process, see
http://en.wikipedia.org/wiki/Joule-Thomson_effect#Proof_that_enthalpy_remains_constant_in_a_Joule-
Thomson_process.

it is typically given as a function ofQ and T . Nonetheless, one can still find µ by considering,

dF = dE − TdS − SdT = −PdV − SdT + µdQ. (1.45)

This shows that the chemical potential is

µ =
∂F

∂Q

∣∣∣∣
V,T

. (1.46)

Similarly, in the microcanonical ensemble one typically calculates the entropy as a function ofE
andQ. In this case the relation

dS = βdE + βPdV − βµdQ, (1.47)

allows one to read off the temperature as

β =
∂S

∂E

∣∣∣∣
V,Q

. (1.48)

In many text books, thermodynamics begins from this perspective. We have instead begun
with the entropy defined as −

∑
pi ln pi, as this approach does not require the continuum

limit, and allows the thermodynamic relations to be generated from general statistical con-
cepts. The question “When is statistical mechanics thermodynamics?” is not easily answered.
A more meaningful question concerns the validity of the fundamental thermodynamic relation,
TdS = dE + PdV − µdQ. This becomes valid as long as one can justify differentials, which
is always the case for grand canonical ensemble, where E and Q are averages. However, for
the other ensembles one must be careful because the discreteness of particle number or energy
levels can invalidate the use of differentials. This is never a problem for macroscopic systems
because the level densities are so high that differential considerations are justified.

1.10 Forces at Finite Temperature

Let’s assume a particle feels a force dependent on its position r, and that the force depends
on how the thermal medium reacts to the particle’s position. Normally, one would consider the
force from the gradient of the energy, fi = −∂iE(r). Indeed, this is the case in a thermal system,

fi = −
∂E(r)

∂ri

∣∣∣∣
S,N,V

, (1.49)
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where the partial derivative is taken at constant entropy, not constant temperature. This is based
on the idea that the particle moves slowly, and that the system remains in the given, but shifting,
energy level of the system as the coordinate is slowly varied. However, thermal calculations are
often performed more readily at fixed temperature, rather than fixed entropy. For that reason,
one would like to know how to calculate the force using derivatives where the temperature is
fixed, and then correct for the fact that the temperature must be altered to maintain constant
entropy. For simplicity, consider a one-dimensional system. The fundamental thermodynamic
relation becomes

dE = TdS − PdV + µdQ− fdx, (1.50)

and f manifestly matches the definition in Eq. (1.49). One can alter this equation by adding
−d(TS) to both sides, which givs

d(E − TS) = −SdT − PdV + µdQ− fdx, (1.51)

where this is the same force as before, only in this case inspection reveals

f = −
∂(E − TS)

∂x

∣∣∣∣
T,V,Q

. (1.52)

Thus, the Helmholtz free energy, F = E−TS, plays the role of the potential. This result should
not be interpreted as the particle feels a force that pushes it towards minimizing the potential
energy and maximizing the entropy. Particles don’t feel entropy. The −TS term accounts for
taking gradients at fixed temperature, whereas the definition of the force is the derivative of the
energy with respect to x at fixed entropy.

1.11 Maxwell Relations

Maxwell relations are a set of equivalences between derivatives of thermodynamic variables.
They can prove useful in several cases, for example in the Clausius-Clapeyron equation, which
will be discussed later. Derivations of Maxwell relations also tends to appear in written exami-
nations.

All Maxwell relations can be derived from the fundamental thermodynamic relation,

dS = βdE + (βP )dV − (βµ)dQ, (1.53)

from which one can readily identify β, P and µwith partial derivatives,

β =
∂S

∂E

∣∣∣∣
V,Q

, (1.54)

βP =
∂S

∂V

∣∣∣∣
E,Q

,

βµ = −
∂S

∂Q

∣∣∣∣
E,V

.
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Here, the subscripts refer to the quantities that are fixed. Because for any continuous function
f(x, y), ∂2f/(∂x∂y) = ∂2f/(∂y∂x), one can state the following identities which are known
as Maxwell relations,

∂β

∂V

∣∣∣∣
E,Q

=
∂(βP )

∂E

∣∣∣∣
V,Q

, (1.55)

∂β

∂Q

∣∣∣∣
E,V

= −
∂(βµ)

∂E

∣∣∣∣
V,Q

,

∂(βP )

∂Q

∣∣∣∣
E,V

= −
∂(βµ)

∂V

∣∣∣∣
E,Q

.

An entirely different set of relations can be derived by beginning with quantities other than dS.
For instance, if one begins with dF ,

F = E − TS, (1.56)
dF = dE − SdT − TdS,

= −SdT − PdV − µdQ,

three more Maxwell relations can be derived by considering second derivatives ofF with respect
to T, V andQ. Other sets can be derived by considering the Gibbs free energy,G = E+PV −
TS, or the pressure, PV = TS − E + µQ.

Example 1.3:
Validate the following Maxwell relation:

∂V

∂Q

∣∣∣∣
P,T

=
∂µ

∂P

∣∣∣∣
Q,T

(1.57)

Start with the standard relation,

dS = βdE + (βP )dV − (βµ)dQ. (1.58)

This will yield Maxwell’s relations where E, V and Q are held constant. Because we want a
relation where T,N and P/T are held constant, we should consider:

d(S − (βP )V − βE) = −Edβ − V d(βP )− (βµ)dQ. (1.59)

This allows one to realize:

V = −
∂(S − βPV − βE)

∂(βP )

∣∣∣∣
β,Q

, βµ = −
∂(S − βPV − βE)

∂Q

∣∣∣∣
β,βP

. (1.60)

Using the fact that ∂2f/(∂x∂y) = ∂2f/(∂y∂x),

∂V

∂Q

∣∣∣∣
βP,T

=
∂βµ

∂βP

∣∣∣∣
β,Q

. (1.61)
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On the l.h.s., fixing βP is equivalent to fixing P because T is also fixed. On the r.h.s., the factors
of β in ∂(βµ)/∂(βP ) cancel because T is fixed. This then leads to the desired result, Eq. (1.57).

Example 1.4:
Show that

∂E

∂Q

∣∣∣∣
S,P

= µ− P
∂µ

∂P

∣∣∣∣
S,Q

.

One way to start is to look at the relation and realize that V does not appear. Thus, let’s rewrite
the fundamental thermodynamic relation with dV = · · · . This ensures that we won’t have any
V s appearing on the r.h.s. of the equations going forward.

dV =
T

P
dS −

1

P
dE +

µ

P
dQ.

Now, because the relation will involve S, P and Q being constant add d(E/P ) from each side
to get

d(V + E/P ) =
T

P
dS + Ed(1/P ) +

µ

P
dQ

∂E

∂Q

∣∣∣∣
S,P

=
∂(µ/P )

∂(1/P )

∣∣∣∣
S,Q

= µ− P
∂µ

∂P

∣∣∣∣
S,Q

.

Some students find a nmemonic useful for deriving some of the Maxwell relations. See
http://en.wikipedia.org/wiki/Thermodynamic_square. However, this is more cute than use-
ful, as you will see with some of the more difficult problems at the end of this chapter.

1.12 Fluctuations

Statistical averages of higher order terms in the energy or the density can also be extracted from
the partition function. For instance, in the grand canonical ensemble (using β = 1/T and
α = −µ/T as the variables),

∂2
β lnZ(β, α) = ∂β

∂βZ

Z
(1.62)

=
1

Z
∂2
βZ −

(
1

Z
∂βZ

)2

=
〈
E2〉 − 〈E

〉2
=

〈
(E − 〈E〉)2

〉
.

Thus, the second derivative of lnZ gives the fluctuation of the energy from its average value.
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Similarly, one can see that

∂β∂α lnZ = 〈(E − 〈E〉)(Q− 〈Q〉)〉 (1.63)
∂2
α lnZ =

〈
(Q− 〈Q〉)2

〉
. (1.64)

The specific heat at constant α and µ is quickly related to the fluctuation,

dE

dT

∣∣∣∣
V,α

= −
1

T 2

dE

dβ

∣∣∣∣
V,α

=
1

T 2

〈
(E − 〈E〉)2

〉
.

Fluctuations play a critical role in numerous areas of physics, most notably in critical phenom-
ena.

1.13 Problems

1. Using the methods of Lagrange multipliers, find x and y that minimize the following func-
tion,

f(x, y) = 3x2 − 4xy + y2,

subject to the constraint,
3x+ y = 0.

2. Consider 2 identical bosons (A given level can have an arbitrary number of particles) in
a 2-level system, where the energies are 0 and ε. In terms of ε and the temperature T ,
calculate:

(a) The partition function ZC
(b) The average energy 〈E〉. Also, give 〈E〉 in the T = 0,∞ limits.

(c) The entropy S. Also give S in the T = 0,∞ limits.

(d) Now, connect the system to a particle bath with chemical potential µ. Calculate
ZGC(µ, T ). Find the average number of particles, 〈N〉 as a function of µ and T .
Also, give the T = 0,∞ limits.
Hint: For a grand-canonical partition function of non-interacting particles, one can
state that ZGC = Z1Z2 · · ·Zn, where Zi is the partition function for one single-
particle level, Zi = 1 + e−β(εi−µ) + e−2β(εi−µ) + e−3β(εi−µ) · · · , where each term
refers to a specific number of bosons in that level.

3. Repeat the problem above assuming the particles are identical Fermions (No level can have
more than one particle, e.g., both are spin-up electrons).

4. Beginning with the expression,

TdS = dE + PdV − µdQ,

show that the pressure can be derived from the Helmholtz free energy, F = E−TS, with

P = −
∂F

∂V

∣∣∣∣
Q,T

.
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5. Assuming that the pressure P is independent of V when written as a function of µ and T ,
i.e., lnZGC = PV/T (true if the system is much larger than the range of interaction),

(a) Find expressions for E/V and Q/V in terms of P, T , and partial derivatives of P
or P/T w.r.t. α ≡ −µ/T and β ≡ 1/T . Here, assume the chemical potential is
associated with the conserved numberQ.

(b) Find an expression for CV = dE/dT |Q,V in terms of P/T , E, Q, V and the deriva-
tives of P , P/T , E andQw.r.t. β and α.

(c) Show that the entropy density s = ∂TP |µ.

6. Beginning with:
dE = TdS − PdV + µdN,

derive the Maxwell relation,
∂V

∂µ

∣∣∣∣
S,P

= −
∂N

∂P

∣∣∣∣
S,µ

.

7. Beginning with the definition,

CP = T
∂S

∂T

∣∣∣∣
N,P

,

Show that
∂Cp

∂P

∣∣∣∣
T,N

= −T
∂2V

∂T 2

∣∣∣∣
P,N

Hint: Find a quantity Y for which both sides of the equation become ∂3Y/∂2T∂P .

8. Beginning with

TdS = dE + PdV − µdQ, and G ≡ E + PV − TS,

(a) Show that

S = −
∂G

∂T

∣∣∣∣
N,P

, V =
∂G

∂P

∣∣∣∣
N,T

.

(b) Beginning with

δS(P,N, T ) =
∂S

∂P
δP +

∂S

∂N
δN +

∂S

∂T
δT,

Show that the specific heats,

CP ≡ T
∂S

∂T

∣∣∣∣
N,P

, CV ≡ T
∂S

∂T

∣∣∣∣
N,V

,

satisfy the relation:

CP = CV − T
(
∂V

∂T

∣∣∣∣
P,N

)2(
∂V

∂P

∣∣∣∣
T,N

)−1

Note that the compressibility,≡ −∂V/∂P , is positive (unless the system is unstable),
therefore CP > CV .
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9. From Sec. 1.12, it was shown how to derive fluctuations in the grand canonical ensem-
ble. Thus, it is straightforward to find expressions for the following fluctuations, φEE ≡
〈δEδE〉/V, φQQ ≡ 〈δQδQ〉/V and φQE ≡ 〈δEδQ〉/V . In terms of the 3 fluctuations
above, calculated in the grand canonical ensemble, and in terms of the volume and the
temperature T , express the specific heat at constant volume and charge,

CV =
dE

dT

∣∣∣∣
Q,V

.

Note that the fluctuation observables, φij , are intrinsic quantities, assuming that the corre-
lations in energy density occur within a finite range and that the overall volume is much
larger than that range.
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2 Statistical Mechanics of Non-Interacting Particles

“Its a gas! gas! gas!” - M. Jagger & K. Richards

When students think of gases, they reminisce fondly back to high school physics or chemistry,
and remember the ideal gas law. This simple physics applies for gases which are sufficiently di-
lute that interactions between particles can be neglected and that identical-particle statistics can
be ignored. For this chapter, we will indeed confine ourselves to the assumption that interactions
can be neglected, but will consider in detail the effects of quantum statistics. Quantum statistics
play a dominant role in situations across all fields of physics. For instance, Fermi gas concepts
play the essential role in understanding nuclear structure, stellar structure and dynamics, and
the properties of metals and superconductors. For Bose systems, quantum degeneracy can drive
the creation of super-fluids, such as liquid Helium or in many atom/molecule trap systems.
Even in the presence of strong interactions between constituents, the role of quantum degen-
eracy can still play a dominant role in determining the properties and behaviors of numerous
systems.

2.1 Non-Interacting Gases

A non-interacting gas can be considered as a set of independent momentum modes, labeled by
the momentum p. For particles in a box defined by 0 < x < Lx, 0 < y < Ly, 0 < z < Lz, the
single-particle wave functions have the form,

ψpx,py,pz(x, y, z) ∼ sin(pxx/~) sin(pyy/~) sin(pzz/~) (2.1)

with the quantized momenta ~p satisfying the boundary conditions,

pxLx/~ = nxπ, nx = 1, 2, · · · , (2.2)
pyLy/~ = nyπ, ny = 1, 2, · · · ,
pzLz/~ = nzπ, nz = 1, 2, · · ·

The number of states in d3p is dN = V d3p/(π~)3. Here px, py and pz are positive numbers
as the momenta are labels of the static wavefunctions, each of which can be considered as a
coherent combination of a forward and a backward moving plane wave. The states above are
not eigenstates of the momentum operator, as sin px/~ is a mixture of left-going and right-going
states. If one wishes to consider plane waves, the signs of the momenta can be either positive or
negative. Because one doubles the range of momentum for each dimension when one includes
both positive and negative momenta, one needs to introduce a factor of 1/2 to the density of
states for each dimension when including the negative momentum states. The density of states
in three dimensions then becomes:

dN = (2s+ 1)V
d3p

(2π~)3
. (2.3)

For one or two dimensions, d3p is replaced by dDp and (2π~)3 is replaced by (2π~)D, whereD
is the number of dimensions. For two dimensions, the volume is replaced by the area, and in one
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dimension, the length fulfills that role. The number of single-particle states also increases with
spin, thus the (2s+ 1) factor. It is critical to distinguish that dN refers to the number of modes,
or single-particle states, not the number of particles, and not the number of system states.

In the grand canonical ensemble, each momentum mode can be considered as being an inde-
pendent system, described by its own partition function, zp. Thus, the partition function of the
entire system is the product of partition functions of each mode,

ZGC =
∏
p

zp, zp =
∑
np

e−npβ(εp−µq). (2.4)

Here np is the number of particles of charge q in the mode, and np can be 0 or 1 for Fermions, or
can be 0, 1, 2, · · · for bosons. The classical limit corresponds to the case where the probability
of having more than 1 particle would be so small that the Fermi and Bose cases become indis-
tinguishable. Later on it will be shown that this limit requires that µ is much smaller (in units of
T ) than the energy of the lowest mode.

For thermodynamic quantities, only lnZGC plays a role, which allows the product in Eq. (2.4)
to be replaced by a sum,

lnZGC =
∑
p

ln zp (2.5)

= (2s+ 1)

∫
V d3p

(2π~)3
ln zp

= (2s+ 1)

∫
V d3p

(2π~)3
ln(1 + e−β(ε−µq)) (Fermions),

= (2s+ 1)

∫
V d3p

(2π~)3
ln

(
1

1− e−β(ε−µq)

)
(Bosons),

= (2s+ 1)

∫
V d3p

(2π~)3
(∓) ln(1∓ e−β(ε−µq)) (Bosons/Fermions).

Here, the intrinsic spin of the particles is s, and each of the (2s + 1) spin projections ms con-
tributes independently to the partition function, i.e. the independent modes are labeled by the
momenta and spin projection. For the Fermi expression, where zp = 1 + e−β(εp−µ), the first
term represents the contribution for having zero particles in the state and the second term ac-
counts for having one particle in the level. For bosons, which need not obey the Pauli exclusion
principle, one would include additional terms for having 2, 3 · · · particles in the mode, and the
Bosonic relation has made use of the fact that 1 + x+ x2 + x3 · · · = 1/(1− x).

Example 2.1:
For a classical two-dimensional, non-interacting, non-relativistic gas of fermions of massm, and
charge q = 1 and spin s, find the charge density and energy density of a gas in terms of µ and
T .
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The charge can be found by taking derivatives of lnZGC with respect to α = −βµ,

Q =
∂

∂(βµ)
lnZGC, (2.6)

= (2s+ 1)A

∫ ∞
0

2πp dp

(2π~)2
·

e−β(p2/2m−µ)

1 + e−β(p2/2m−µ)

= (2s+ 1)A
mT

2π~2

∫ ∞
0

dx
e−(x−βµ)

1 + e−(x−βµ)
.

The above expression applies to Fermions. To apply the classical limit, one takes the limit that
βµ→ −∞,

Q

A
= (2s+ 1)

mT

2π~2

∫ ∞
0

dx e−(x−βµ) (2.7)

= (2s+ 1)
mT

2π~2
eβµ.

In calculating the energy per unit area, one follows a similar procedure beginning with,

E = −
∂

∂β
lnZGC, (2.8)

E

A
= (2s+ 1)

∫ ∞
0

2πp dp

(2π~)2

p2

2m

e−β(p2/2m−µ)

1 + e−β(p2/2m−µq)

= (2s+ 1)
mT 2

2π~2

∫ ∞
0

dx x
e−(x−βµ)

1 + e−(x−βµ)

≈ (2s+ 1)
mT 2

2π~2
eβµ, (2.9)

where in the last step we have taken the classical limit. If we had begun with the Bosonic ex-
pression, we would have came up with the same answer after assuming βµ→ −∞.

As can be seen in working the last example, the energy and charge can be determined by the
following integrals,

Q

V
= (2s+ 1)

∫
dDp

(2π~)D
f(ε), (2.10)

E

V
= (2s+ 1)

∫
dDp

(2π~)D
ε(p)f(ε),

where D is again the number of dimensions and f(p) is the occupation probability, a.k.a. the
phase-space occupancy or the phase-space filling factor,

f(ε) =


e−β(ε−µ)/(1 + e−β(ε−µ)), Fermions, Fermi−Dirac distribution
e−β(ε−µ)/(1− e−β(ε−µ)), Bosons, Bose− Einstein distribution

e−β(ε−µ), Classical, Boltzmann distribution.
(2.11)

22



PHY 831 2 STATISTICAL MECHANICS OF NON-INTERACTING PARTICLES

Here f(ε) can be identified as the average number of particles in mode p. These expressions are
valid for both relativistic or non-relativisitc gases, the only difference being that for relativistic
gases ε(p) =

√
m2 + p2.

The classical limit is valid whenever the occupancies are always much less than unity, i.e.,
eβ(µ−ε0) � 1, or equivalently β(µ − ε0) → −∞. Here, ε0 refers to the energy of the low-
est momentum mode, which is zero for a massless gas, or for a non-relativistic gas where the
rest-mass energy is ignored, ε = p2/2m. If one preserves the rest-mass energy in ε(p), then
ε0 = mc2. The decision to ignore the rest-mass in ε(p) is accompanied by translating µ by
the same amount. For relativistic systems, one usually keeps the rest mass energy because one
can not ignore the contribution from anti-particles. For instance, if one has a gas of electrons
and positrons, the chemical potential modifies the phase space occupancy through a factor eβµ,
while the anti-particle is affected by e−βµ, and absorbing the rest-mass into µwould destroy the
symmetry between the expressions for the densities of particles and anti-particles.

2.2 Equipartition and Virial Theorems

Particles undergoing interaction with an external field, as opposed to with each other, also be-
have independently. The phase space expressions from the previous section are again important
here, as long as the external potential does not confine the particles to such small volumes that
the uncertainty principle plays a role. The structure of the individual quantum levels will be-
come important only if the energy spacing is not much smaller than the temperature.

The equipartion theorem applies for the specific case where the quantum statistics can be ne-
glected, i.e. f(ε) = e−β(ε−µ), and one of the variables, p or q, contributes to the energy quadrat-
ically. The equipartion theory states that the average energy associated with that variable is
then (1/2)T . This is the case for the momentum of non-relativistic particles being acted on by
potentials depending only on the position. In that case,

E =
p2
x + p2

y + p2
z

2m
+ V (r). (2.12)

When calculating the average of p2
x/2m (in the classical limit),〈

p2
x

2m

〉
=

(2π~)−3
∫
dpxdpydpzd

3r (p2
x/2m)e−(p2x+p2y+p2z)/2mT−V (r)/T

(2π~)−3
∫
dpxdpydpzd3r e−(p2x+p2y+p2z)/2mT−V (r)/T

, (2.13)

the integrals over py, pz and r factorize and then cancel leaving only,〈
p2
x

2m

〉
=

∫
dpx (p2

x/2m)e−p
2
x/2mT∫

dpx e−p
2
x/2mT

=
T

2
. (2.14)

The average energy associated with px is then independent ofm.

The same would hold for any other degree of freedom that appears in the Hamiltonian quadrat-
ically. For instance, if a particle moves in a three-dimensional harmonic oscillator,

H =
p2
x + p2

y + p2
z

2m
+

1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.15)
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the average energy is
〈H〉 = 3T, (2.16)

with each of the six degrees of freedom contributing T/2.

The generalized equipartion theorem works for any variable that is confined to a finite region, and
states 〈

q
∂H

∂q

〉
= T. (2.17)

For the case where the potential is quadratic, this merely states the ungeneralized form of the
equipartion theorem. To prove the generalized form, one need only integrate by parts,〈

q
∂H

∂q

〉
=

∫
dq q(∂H/∂q) e−βH(q)∫

dq e−βH(q)
(2.18)

=
−T

∫
dq q(∂/∂q) e−βH(q)∫
dq e−βH(q)

=
T
[
qe−βH(q)

∣∣∞
−∞ +

∫
dq e−βH(q)

]
∫
dq e−βH(q)

= T if H(q → ±∞) =∞.

Note that disposing of the term with the limits ±∞ requires that H(q → ±∞) → ∞, or
equivalently, that the particle is confined to a finite region of phase space. The rule also works if
p takes the place of q.

The virial theorem has an analog in classical mechanics, and is often referred to as the “Clausius
Virial Theorem”. It states, 〈

pi
∂H

∂pi

〉
=

〈
qi
∂H

∂qi

〉
. (2.19)

To prove the theorem we use Hamilton’s equations of motion,〈
d

dt
(qipi)

〉
= 〈piq̇i〉+ 〈qiṗi〉 =

〈
pi
∂H

∂pi

〉
−
〈
qi
∂H

∂qi

〉
. (2.20)

The theorem will be proved if the time average of d/dt(piqi) = 0. Defining the time average as
the average over an infinite interval τ ,〈

d

dt
(piqi)

〉
≡

1

τ

∫ τ

0

dt
d

dt
(piqi) =

1

τ
(piqi)|τ0 , (2.21)

which will equal zero because τ → ∞ and piqi is finite. Again, this finite-ness requires that
the Hamiltonian confines both pi and qi to a finite region in phase space. For cyclic coordinates,
Hamiltonian equations do not apply at the discontinuity, e.g. φ → φ − 2π, so this relation
is invalid for cyclic coordinates. It is valid for reflective potentials, e.g. a square well, even
in the limit the reflective potential becomes infinite. In the first line of the expression above,
the equivalence between the statistical average and the time-weighted average required the the
Ergodic theorem.
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Example 2.2:
Using the virial theorem and the non-generalized equipartion theorem, show that for a non-
relativistic particle moving in a one-dimensional potential,

V (x) = κx6,

that the average potential energy is

〈V (x)〉 = T/6.

To proceed, we first apply the virial theorem to relate an average of the potential to an average
of the kinetic energy which is quadratic in p and can thus be calculated with the equipartion
theorem, 〈

x
∂V

∂x

〉
=

〈
p
∂H

∂p

〉
=

〈
p2

m

〉
= 2

〈
p2

2m

〉
= T. (2.22)

Next, one can identify 〈
x
∂V

∂x

〉
= 6 〈V (x)〉 ,

to see that

〈V (x)〉 =
T

6
.

One could have obtained this result in one step with the generalized equipartion theorem.

2.3 Degenerate Bose Gases

The term degenerate refers to the fact there are some modes for which the occupation probability
f(p) is not much smaller than unity. In such cases, Fermions and Bosons behave very differently.
For bosons, the occupation probability,

f(ε) =
e−β(ε−µ)

1− e−β(ε−µ)
, (2.23)

will diverge if µ reaches ε. For the non-relativistic case (ε = p2/2m ignoring the rest-mass en-
ergy) this means that a divergence will ensue if µ ≥ 0. For the relativistic case (ε =

√
p2 +m2

includes the rest-mass in the energy) a divergence will ensue when µ ≥ m. This divergence
leads to the phenomena of Bose condensation.

To find the density required for Bose condensation, one needs to calculate the density for µ →
0−. For lower densities, µ will be negative and there are no singularities in the phase space
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density. The calculation is a bit tedious but straight-forward,

ρ(µ = 0−, T ) = (2s+ 1)

∫
dDp

(2π~)D
e−p

2/2mT

1− e−p2/2mT
(2.24)

= (2s+ 1)

∫
dDp

(2π~)D

∞∑
n=1

e−np
2/2mT ,

= (2s+ 1)
(mT )D/2

(2π~)D

(∫
dDxe−x

2/2

) ∞∑
n=1

n−D/2

For D = 1, 2, the sum over n diverges. Thus for one or two dimensions, Bose condensation
never occurs (at least for massive particles where εp ∼ p2) as one can attain an arbitrarily high
density without having µ reach zero. This can also be seen by expanding f(ε) for εp and µ near
zero,

f(p→ 0) ≈
1

βp2/m− βµ
. (2.25)

Again, forD = 1, 2, the phase space weight pD−1dpwill not kill the divergence of f(p→ 0) in
the limit µ → 0. Thus, one can obtain arbitrarily high densities without µ actually reaching 0.
Because µ never reaches zero, even as the density approaches infinity, Bose condensation never
occurs.

ForD = 3, the condensation density is finite,

ρ(µ = 0) = (2s+ 1)
(mT )3/2

(2π~)3

(∫
d3xe−x

2/2

) ∞∑
n=1

n−3/2 (2.26)

= (2s+ 1)
(mT )3/2

(2π)3/2~3
ζ(3/2),

where ζ(n) is the Riemann-Zeta function,

ζ(n) ≡
∞∑
j=1

1

jn
(2.27)

The Riemann-Zeta function appears often in statistical mechanics, and especially often in grad-
uate written exams. Some values are:

ζ(3/2) = 2.612375348685... ζ(2) = π2/6, ζ(3) = 1.202056903150..., ζ(4) = π4/90
(2.28)

Once the density exceeds ρc = ρ(µ = 0−),µ no longer continues to rise. Instead, the occupation
probability of the ground state,

f =
e−β(ε0−µ)

1− e−β(ε0−µ)
, (2.29)

becomes undefined, and any additional density above ρc is carried by particles in the ground
state. The gas has two components. For the normal component, the momentum distribution is
described by the normal Bose-Einstein distribution with µ = 0 and has a density of ρc, while
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the condensation component has density ρ − ρc. Similarly, one can fix the density and find the
critical temperature Tc, below which the system condenses.

Having a finite fraction of the particles in the ground state does not explain superfluidity by
itself. However, particles at very small relative momentum (in this case zero) will naturally
form ordered systems if given some kind of interaction (For dilute gases the interaction must
be repulsive, as otherwise the particles would form droplets). An ordered conglomeration of
bosons will also move with remarkably little friction. This is due to the fact that a “gap” energy is
required to remove any of the particles from the ordered system, thus allowing the macroscopic
condensate to move coherently as a single object carrying a macroscopic amount of current even
though it moves very slowly. Because particles bounce elastically off the condensate, the drag
force is proportional to the square of the velocity (just like the drag force on a car moving through
air) and is negligible for a slow moving condensate. Before the innovations in atom traps during
the last 15 years, the only known Bose condensate was liquid Helium-4, which condenses at
atmospheric pressure at a temperature of 2.17 ◦K, called the lambda point. Even though liquid
Helium-4 is made of tightly packed, and therefore strongly interacting, atoms, the prediction for
the critical temperature using the calculations above is only off by a degree or so.

Example 2.3:
a) Photons are bosons and have no charge, thus no chemical potential. Find the energy density
and pressure of a two-dimensional gas of photons (ε = p) as a function of the temperature T .
Note: whereas in three dimensions photons have two polarizations, they would have only one
polarization in two dimensions. Also, in two dimensions the pressure is a force per unity length,
not a force per unit area as it is in three dimensions.

First, write down an expression for the pressure (See HW problem),

P =
1

(2π~)2

∫
2πpdp

p2

2ε

e−ε/T

1− e−ε/T
, (2.30)

which after replacing ε = p,

P =
1

4π~2

∫
p2dp

e−p/T

1− e−p/T
. (2.31)

=
T 3

4π~2

∫
x2dx

{
e−x + e−2x + e−3x + · · ·

}
,

=
T 3

2π~2

{
1 +

1

23
+

1

33
+ · · ·

}
=

T 3

2π~2
ζ(3),

where the Riemann-Zeta function, ζ(3), is 1.202056903150... Finally, the energy density, by in-
spection of the expression for the pressure, is E/V = 2P .

b) If these were charged particles, could they form a condensate?

Yes, if you consider the term 1/(1− e−p/T ), you will see it behaves as 1/p as p→ 0. The factor
pdp cancels the divergence and the integral for the density,

ρc =
1

(2π~)2

∫
2πpdp

p2

2ε

e−ε/T

1− e−ε/T
,
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is finite.

2.4 Degenerate Fermi Gases

The goal of this section is to derive the properties of a non-interacting Fermi gas at low temper-
ature. By “low”, we mean that the temperature is much less than the Fermi energy, so that the
thermal excitations only affect those levels near the Fermi “surface”. The Fermi energy, εf , refers
to the single-particle energy below which the single-particle levels are filled, f → ‘, at zero tem-
perature, whereas all the levels with energies greater than εf are empty. The Fermi “surface”
refers to momentum space, and the momentum pf corresponding to εf = p2

f/2m. The density
of particles at zero temperature is

ρ(T = 0) =
2

(2π~)3

4

3
πp3

f , (2.32)

where the last factor is the volume of momentum space inside the Fermi surface. When the
temperature is raised from zero, particles in levels close to the Fermi surface can be excited
above εf , but only those levels in the neighborhood εf − T . ε . εf + T . The number of such
states affected in∼ D(εf)T , where D(ε) is the density of single-particle states per energy. The
typical exciation is ∼ 2T , so the excitation energy should behave as E∗ ∼ DT 2. Deriving this
proportionality factor is our immediate goal, along with the finding expressions for the change
in the density at fixed chemical potential.

At zero temperature, the Fermi-Dirac distribution becomes,

f(T → 0) =
e−β(ε−µ)

1 + e−β(ε−µ)

∣∣∣∣∣
β→∞

= Θ(µ− ε), (2.33)

a step-function, which is unity for energies below the chemical potential and zero for ε > µ.
The density is then,

ρ(µ, T = 0) =

∫ µ

0

dε D(ε)/V. (2.34)

Here, one can see that the chemical potential and Fermi energy are synonymous when T = 0
and there are no interactions.

For three dimensions, the density of states is:

D(ε)/V =
1

V

dNstates

dp

dp

dε
=

(2s+ 1)

(2π~)3
(4πp2)

dp

dε
. (2.35)

For small temperatures (much smaller than µ) one can expand f in the neighborhood of µ,

f(ε) = f0 + δf, (2.36)

δf =

{
e−ε

′/T/(1 + e−ε
′/T )− 1, ε′ ≡ ε− µ < 0

e−ε
′/T/(1 + e−ε

′/T ), ε′ > 0

=

{
−eε′/T/(1 + eε

′/T ), ε′ < 0
e−ε

′/T/(1 + e−ε
′/T ), ε′ > 0

.

28



PHY 831 2 STATISTICAL MECHANICS OF NON-INTERACTING PARTICLES

 0

 0.5

 1

 0

f(ε
)

ε
µ

-0.5

 0

 0.5

 0

δ 
f( ε

)

ε

ε'

Figure 2.1: The phase space density at small temperature is shown in red, while the phase space density
at zero temperature is shown in green.

Here, δf is the difference of the phase space occupancy compared to its value at T = 0.

The function δf is illustrated in Fig. 2.1. The function δf(ε′) is ∓1/2 at ε′ = 0 and returns to
zero for |ε′| >> T . Also, δf is an odd function in ε′, which will be important below.

One can expand D(µ+ ε′) in powers of ε′, and if the temperature is small, one need only keep
the first term in the Taylor expansion if one is considering the limit of small temperature.

ρ(µ, T ) ≈ ρ(µ, T = 0) +
1

V

∫ ∞
−∞

dε′
[
D(µ) + ε′

dD

dε

]
δf(ε′), (2.37)

E

V
≈

E

V
(µ, T = 0) +

1

V

∫ ∞
−∞

dε′ (µ+ ε′)

[
D(µ) + ε′

dD

dε

]
δf(ε′).

Because one integrates from −∞ → ∞, one need only keep terms in the integrand which are
even in ε′. Given that δf is odd in ε′, the following terms remain,

δρ(µ, T ) =
2

V

dD

dε
I(T ), (2.38)

δ

(
E

V

)
= µδρ+

2

V
D(µ)I(T ), (2.39)

I(T ) ≡
∫ ∞

0

dε′ ε′
e−ε

′/T

1 + e−ε′/T

= T 2

∫ ∞
0

dx x
e−x

1 + e−x
.
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With some trickery, I(T ) can be written in terms of ζ(2),

I(T ) = T 2

∫ ∞
0

dx x
(
e−x − e−2x + e3x − e−4x + · · ·

)
, (2.40)

= T 2

∫ ∞
0

dx x
{(
e−x + e−2x + e3x + · · ·

)
− 2

(
e−2x + e−4x + e6x + e−8x + · · ·

)}
,

= T 2ζ(2)− 2(T/2)2ζ(2) = T 2ζ(2)/2,

where ζ(2) = π2/6. This gives the final expressions:

δρ(µ, T ) =
π2T 2

6V

dD

dε

∣∣∣∣
ε=µ

, (2.41)

δ

(
E

V

)
= µδρ+

π2T 2

6V
D(µ). (2.42)

These expressions are true for any number of dimensions, as the dimensionality affects the an-
swer by changing the values of D and dD/dε. Both expressions assume that µ is fixed. If ρ if
fixed instead, the µδρ term in the expression for δE is neglected. It is important to note that
the excitation energy rises as the square of the temperature for any number of dimensions. One
power of the temperature can be thought of as characterizing the range of energies δε, over
which the Fermi distribution is affected, while the second power comes from the change of en-
ergy associated with moving a particle from µ− δε to µ+ δε.

Example 2.4:
Find the specific heat at fixed density for a relativistic three-dimensional gas of Fermions of mass
m, spin s and density ρ at low temperature T .

Even though the temperature is small, the system can still be relativistic if µ is not much smaller
than the rest mass. Such is the case for the electron gas inside a neutron star. In that case,
ε =

√
m2 + p2 which leads to dε/dp = p/ε, and the density of states and the derivative from

Eq. (2.35) becomes

D(ε) = V
(2s+ 1)

(2π~)3
4πpε . (2.43)

The excitation energy is then:

δEfixed N = (2s+ 1)
pfεfV

12~3
T 2, (2.44)

where pf and εf are the Fermi momentum and Fermi energy, i.e., the momentum where ε(pf) =
εf = µ at zero temperature. For the specific heat this yields:

CV =
dE/dT

ρV
= (2S + 1)

2pfεf

12~3ρ
T. (2.45)

To express the answer in terms of the density, one can use the fact that at zero temperature,

ρ =
(2s+ 1)

(2π~)3

4πp3
f

3
, (2.46)

pf =

{
(6π2~3ρ)

(2s+ 1)

}1/3

.
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to substitute for pf in the expression for CV , and using the fact that εf =
√
p2
f +m2.

One final note: Rather than using the chemical potential or the density, author’s often refer to
the Fermi energy εf , the Fermi momentum pf , or the Fermi wave-number kf = pf/~. These
quantities usually refer to the density, rather than to the chemical potential, though not necessar-
ily always. That is, because the chemical potential changes as the temperature rises from zero to
maintain a fixed density, it is somewhat arbitrary as to whether εf refers to the chemical poten-
tial, or whether it refers to the chemical potential one would have used if T were zero. Usually,
the latter criterium is used for defining εf , pf and kf . That is, εf is always measured relative
to the energy for which p = 0, whereas µ is measured relative to the total energy which would
include the potential. For instance, if there was a gas of density ρ, the Fermi momentum would
be defined by:

ρ = (2s+ 1)
1

(2π~)3

4π

3
p3
f , (2.47)

and the Fermi energy (for the non-relativistic case) would be given by:

εf =
p2
f

2m
. (2.48)

If there were an attractive potential of strength V , the chemical potential at zero temperature
would then be εf − V . If the temperature were raised while keeping ρ fixed, pf and εf would
keep constant, but µwould change to keep ρ fixed, consistent with Eq. (2.41).

Example 2.5:
Consider a two-dimensional non-relativistic gas of spin-1/2 Fermions of massm at fixed chem-
ical potential µ.
(A) For a small temperature T , find the change in density to order T 2.
(B) In terms of ρ andm, what is the energy per particle at T = 0
(C) In terms of ρ,m and T , what is the change in energy per particle to order T 2.

First, calculate the density of states for two dimensions,

D(ε) = 2
A

(2π~)2
2πp

dp

dε
=

A

π~2
m, (2.49)

which is independent of pf . Thus, dD/dε = 0, and as can be seen from Eq. (2.41), the density
does not change to order T 2.
The number of particles in areaA is:

N = 2A
1

(2π~)2
πp2

f =
A

2π~2
p2
f , (2.50)

and the total energy of those particles at zero temperature is:

E = 2A
1

(2π~)2

∫ pf

0

2πpfdpf
p2
f

2m
=

A

8mπ~2
p4
f , (2.51)
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and the energy per particle becomes

E

N

∣∣∣∣
T=0

=
p2
f

4m
=
εf

2
, pf =

√
2π~2ρ. (2.52)

From Eq. (2.42), the change in the energy is:

δE = D(µ)
π2

6
T 2 = A

πm

6~2
T 2, (2.53)

and the energy per particle changes by an amount,

δE

N
=
πm

6~2ρ
T 2 (2.54)

2.5 Rotating Gases and Polarization

Every conserved quantity can be associated with a Lagrange multiplier. Angular momentum is
no different. A rotating gas has angular momentum, which must choose how to partition itself
between orbital angular momentum and spin angular momentum. Here, we derive the spin
polarization for a gas rotating around the z axis with angular frequency ~ω = ωẑ. In such a
system the collective velocity is

~v(coll) = ~ω × ~r. (2.55)

Let the Lagrange multiplier related to angular momentum be γ. The single particle distribution
(neglecting degeneracy effects) is

f(~p, ~r) = exp

{
−β

p2

2m
+ βµ− γ [Sz + ~r × ~p]

}
. (2.56)

Using cylindrical coordinates, where r⊥ ≡
√
x2 + y2, v⊥ ≡ (xẋ + yẏ)/r⊥, and vφ = (xẏ −

yẋ)/r⊥ ,

f(~p, ~r) = exp

{
−βm

v2
r + v2

φ + v2
z

2
+ βµ− γ [Sz +mr⊥vφ]

}
(2.57)

= exp

{
−βm

v2
r + v2

z

2
− βm

(vφ + (γ/β)r⊥)2

2
+ βm

(γ/β)2r2
⊥

2
− γSz + βµ

}
.

For the distribution of velocities to be centered around the desired collective velocity, vφ = ωr⊥,
one must choose γ so that

γ

β
= −ω. (2.58)

Inserting this into Eq. (2.57),

f(~p, ~r) = exp

{
−
βm

2

[
v2
r + v2

z + (vφ − ωr⊥)2
]

+ βm
ω2r2

⊥

2
+ ωβSz + βµ

}
. (2.59)
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The distribution depends on the spin projection through the factor

f(~p, ~r) ∼ e~ω·~S/T , (2.60)

and the spin aligns itself with ~ω. Finally, in addition to the distribution being centered around
v(coll)(~r), there is an additional factor emω2r2⊥/2T . This is the centrifugal term, representing the
fact that the rotation pushes the matter outward.

2.6 Grand Canonical vs. Canonical

In the macroscopic limit, the grand canonical ensemble is the easiest ensemble to analyze. How-
ever, when working with only a few particles, there are differences between the restriction that
only those states with exactly N particles are considered, as opposed to the restriction that the
average number isN . This difference can matter when the fluctuation of the number, which usu-
ally goes as

√
N , is not much less than N itself. To understand how this comes about, consider

the grand canonical partition function,

ZGC(µ, T ) =
∑
N

eµN/TZC(N, T ). (2.61)

Thermodynamic quantities depend on the log of the partition function. If the contributions to
ZGC come from a range of N̄ ± δN , we can approximate ZGC by,

ZGC(µ, T ) ≈ δNeµN̄/TZC(N̄, T ) (2.62)
lnZGC ≈ µN̄/T + lnZC(N̄, T ) + ln δN,

and if one calculates the entropy from the two ensembles, lnZGC + βĒ − µN̄/T in the grand
canonical ensemble and lnZ + βĒ in the canonical ensemble, one will see that the entropy is
greater in the grand canonical case by an amount,

SGC ≈ SC + ln δN. (2.63)

The entropy is greater in the grand canonical ensemble because more states are being considered.
However, in the limit that the system becomes macroscopic, SC will rise proportional toN , and
if one calculates the entropy per particle, S/N , the canonical and grand canonical results will
become identical. For 100 particles, δN ≈

√
N = 10, and the entropy per particle differs only

by ln 10/100 ≈ 0.023. As a comparison, the entropy per particle of a gas at room temperature
is on the order of 20 and the entropy of a quantum gas of quarks and gluons at high temperature
is between three and four units per particle.

2.7 Gibb’s Paradox

Next, we consider the manifestations of particles being identical in the classical limit, i.e., the
limit when there is little chance two particles are in the same single-particle level. We consider
the partition function ZC(N, T ) forN identical spinless particles,

ZC(N, T ) =
z(T )N

N !
, (2.64)
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where z(T ) is the partition function of a single particle,

z(T ) =
∑
p

e−βεp. (2.65)

In the macroscopic limit, the sum over momentum states can be replaced by an integral,
∑
p →

[V/(2π~)3]
∫
d3p. The factor 1/N ! accounts for the fact that if you multiply the N sums, you

will get cross terms where the N particles are in N different states. For example, for N =
4 one cross term would be e−βε4−βε11−βε2−βε93 . However, there are 4! terms with the same
combination of states, but with the numbers 4, 11, 2, 93 rearranged. This counting assumes that
one can neglect the cross terms where the same state appears more than once, which is justified
if there are many more states (relevant states that have significant contributions) than there are
particles, or equivalently, if the occupation probability of any given state is much less than unity.

If the particles were not identical, there would be no 1/N ! factor in Eq. (2.64). This factor
originates from the fact that if particle of type a is in level i and particle of type b is in level j, it
is distinguishable from the state where a is in j and b is in i. This is related to Gibb’s paradox,
which concerns the entropy of two gases of non-identical particles separated by a partition. If the
partition is lifted, the entropy of each particle, which has a contribution proportional to lnV , will
increase by an amount ln(V )− ln(V/2) = ln 2. The total entropy will then increase byN ln 2.
However, if one states that the particles are identical and thus includes the 1/N ! factor in Eq.
(2.64), the change in the total entropy due to the 1/N ! factor is, using Stirling’s approximation,

∆S (from 1/N ! term) = − lnN ! + 2 ln(N/2)! ≈ −N ln 2. (2.66)

Here, the first term comes from the 1/N ! term in the denominator of Eq. (2.64), and the second
term comes from the consideration of the same terms for each of the two sub-volumes. This
exactly cancels the N ln 2 factors inherent to doubling the volume, and the total entropy is not
affected by the removal of the partition. This underscores the importance of taking into account
the indistinguishability of particles even when there is no significant quantum degeneracy.

To again demonstrate the effect of the particles being identical, we calculate the entropy for a
three-dimensional classical gas ofN particles in the canonical ensemble.

S = lnZC + βE = N ln z(T )−N log(N) +N + βE, (2.67)

z(T ) =
V

(2π~)3

∫
d3p e−p

2/2mT = V

(
mT

2π~2

)3/2

, (2.68)

S/N = ln

[
V

N

(
mT

2π~2

)3/2
]

+
5

2
, (2.69)

where the equipartition theorem was applied, E/N = 3T/2. The beauty of the expression is
that the volume of the system does not matter, only V/N , the volume per identical particle.
This means that when calculating the entropy per particle in a dilute gas, one can calculate the
entropy of one particle in a volume equal to the subvolume required so that the average number
of particles of the specific species in the volume is unity. Note that if the components of a gas
have spin s, the volume per identical particle would be (2s + 1)V/N . Also, if there was a
macroscopic volume with all identical particles except one, e.g. one oxygen molecule with a
weird isotope, that one particle would contribute an amount of entropy proportional to ln(V ),
the logarithm of the macroscopic volume.
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2.8 Iterative Techniques for the Canonical and Microcanonical Ensembles

The 1/N ! factor must be changed if there is a non-negligible probability for two particles to be
in the same state p. For instance, the factor zN in Eq. (2.64) contains only one contribution for
all N particles being in the ground state, so there should be no need to divide that contribution
byN ! (if the particles are bosons, if they are Fermions one must disregard any contribution with
more than 1 particle per state). To include the degeneracy for a gas of bosons or fermions, one
can use an iterative procedure. First, assume you have correctly calculated the partition function
forN − 1 particles. The partition function forN particles can be written as:

Z(N) =
1

N
{z1Z(N − 1)± z2Z(N − 2) + z3Z(N − 3)± z4Z(N − 4) · · · } ,

zn ≡
∑
p

e−nβεp. (2.70)

Here, the± signs refer to Bosons/Fermions. If only the first term is considered, one recreates Eq.
(2.64) after beginning withZ(N = 0) = 1 (only one way to arrange zero particles). Proof of this
iterative relation can be accomplished by considering the trace of e−βH using symmetrized/anti-
symmetrized wave functions (See Pratt, PRL84, p.4255, 2000).

If energy and particle number are conserved, one then works with the microcanonical ensemble.
Because energy is a continuous variable, constraining the energy is usually somewhat awkward.
However, for the harmonic oscillator energy levels are evenly spaced, which allows iterative
treatments to be applied. If the energy levels are 0, ε, 2ε · · · , the number of ways, N(A,E) to
arrange A identical particles so that the total energy is E = nε can be found by an iterative
relation,

N(A,E) =
1

A

A∑
a=1

∑
i

(±1)a−1N(A− a,E − aεi), (2.71)

where i denotes a specific quantum state. For the Fermionic case this relation can be used to
solve a problem considered by Euler, “How many ways can a integers be arranged to sum to E
without using the same number twice?”

Iterative techniques similar to the ones mentioned here can also incorporate conservation of
multiple charges, angular momentum, and in the case of QCD, can even include the constraint
that the overall state is a coherent color singlet (Pratt and Ruppert, PRC68, 024904, 2003).

2.9 Enforcing Canonical and Microcanonical Constraints through Integrat-
ing over Complex Chemical Potentials

For systems that are interactive, or for systems where quantum degeneracy plays an impor-
tant role, grand canonical partition functions are usually easier to calculate. However, knowing
the grand canonical partition function for all imaginary chemical potentials can lead one to the
canonical partition function. First, consider the grand canonical partition function with an imag-
inary chemical potential, µ/T = iθ,

ZGC(µ = iTθ, T ) =
∑
i

e−βEi+iθQi. (2.72)
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Using the fact that,

δQ,Qi =
1

2π

∫ 2π

0

dθ ei(Q−Qi)θ, (2.73)

one can see that,

1

2π

∫ 2π

0

dθ ZGC(µ = iTθ, T )e−iQθ =
∑
i

e−βEiδQ,Qi (2.74)

= ZC(Q, T ).

A similar expression can be derived for the microcanonical ensemble,

1

2π

∫ ∞
−∞

dz ZC(T = i/z)e−izE =
1

2π

∫ ∞
−∞

dz
∑
i

eiz(εi−E) (2.75)

=
∑
i

δ(E − εi) = ρ(E).

As stated previously, the density of states plays the role of the partition function in the micro-
canonical ensemble.

2.10 Problems

1. Consider classical non-relativistic particles acting through a spherically symmetric poten-
tial,

V (r) = V0 exp(r/λ).

Using the equipartion and virial theorems, show that〈
r

λ
V (r)

〉
= 3T.

2. Consider a relativistic (ε =
√
m2 + p2) particle moving in one dimension,

(a) Using the generalized equipartion theorem, show that〈
p2

ε

〉
= T.

(b) Show the same result by explicitly performing the integrals in〈
p2

ε

〉
=

∫
dp (p2/ε)e−ε/T∫
dp e−ε/T

.

HINT: Integrate the numerator by parts.
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3. Beginning with the expression for the pressure for a non-interacting gas of bosons,

PV

T
= lnZGC =

∑
p

ln
(
1 + e−β(εp−µ) + e−2β(εp−µ) + · · ·

)
,
∑
p

→ (2s+1)
V

(2π~)3

∫
d3p,

show that

P =
(2s+ 1)

(2π~)3

∫
d3p

p2

3ε
f(p), where f =

e−β(ε−µ)

1− e−β(ε−µ)
.

Here, the energy is relativistic, ε =
√
p2 +m2.

4. Derive the corresponding expression for Fermions in the previous problem.

5. Derive the corresponding expression for Bosons/Fermions in two dimensions in the pre-
vious problem. Note that in two dimension, P describes the work done per expanding by
a unit area, dW = PdA.

6. For the two-dimensional problem above, show that P gives the rate at which momentum
is transferred per unit length of the boundary of a 2-d confining box. Use simple kinematic
considerations.

7. Consider a massless three-dimensional gas of bosons with spin degeneracyNs. Assuming
zero chemical potential, find the coefficients A and B for the expressions for the pressure
and energy density,

P = ANsT
4,

(
E

V

)
= BNsT

4

8. Show that if the previous problem is repeated for Fermions that:

AFermions =
7

8
ABosons, BFermions =

7

8
BBosons.

9. Consider a three-dimensional solid at low temperature where both the longitudinal and
transverse sound speeds are given by cs = 3000 m/s. Calculate the ratio of specific heats,

CV (due to phonons)

CV (due to photons)
,

where the photon calculation assumes the photons move in a vacuum of the same volume.
Note that for sound waves the energy is ε = ~ω = cs~k = csp. For phonons, there are
three polarizations (two transverse and one longitudinal), and because the temperature
is low, one can ignore the Debye cutoff which excludes high momentum nodes, as their
wavelengths are below the spacing of the crystal.
Data: c = 3.0× 108 m/s, ~ = 1.05457266× 10−34 Js.

10. For a one-dimensional non-relativistic gas of spin-1/2 Fermions of massm, find the change
of the chemical potential δµ(T, ρ) necessary to maintain a constant density per unity
length, ρ, while the temperature is raised from zero to T . Give answer to order T 2.
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11. For a two-dimensional gas of spin-1/2 non-relativistic Fermions of massm at low temper-
ature, find both the quantities below:

d(E/A)

dT

∣∣∣∣
µ,V

,
d(E/A)

dT

∣∣∣∣
N,V

Give both answers to the lowest non-zero order in T , providing the constants of propor-
tionality in terms of the chemical potential at zero temperature andm.

12. The neutron star, PSR J1748-2446ad, discovered in 2004, spins at 716 times a second. Spin
half particles have a spin angular momentum of Sz = ±~/2. If the neutron star has a tem-
perature of 105 K, what is the polarization due to the spinning? P = (n↑ − n↓)/(n↑ +
n↓). Note that this neglects the polarization due to the magnetic field.

13. Consider harmonic oscillator levels, 0, ε, 2ε · · · , populated by A Fermions of the same
spin.

(a) Using the iterative relation in Eq. (2.71) solve for the number of ways, N(A,E), to
arrangeA particles to a total energy E for allA ≤ 3 and all E ≤ 6ε.

(b) ForN(A = 3, E = 6ε), list all the individual ways to arrange the particles.

14. Consider a two-dimensional gas of spinless non-degenerate non-relativistic particles of
massm.

(a) Show that the grand canonical partition function ZGC(µ, T ) is

ZGC(µ, T ) = exp

{
eµ/T

AmT

2π~2

}
(b) Using Eq. (2.74) in Sec. 2.9 and the expression above, show that the canonical partition

function ZC(N, T ) is

ZC(N, T ) =

(
AmT
2π~2

)N
N !
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3 Interacting Gases and the Liquid-Gas Phase Transition

“Life is just a phase you’re going through ... you’ll get over it” – anonymous

3.1 Virial Expansion

The virial expansion is defined as an expansion of the pressure in powers of the density,

P = ρT

[
A1 +

∞∑
n=2

An

(
ρ

ρ0

)n−1
]
, ρ0 ≡

(2s+ 1)

(2π~)3

∫
d3p e−εp/T . (3.1)

The leading term is always A1 = 1, as low density matter always behaves as an ideal gas
(here we assume non-relativistic gases). The contribution from interactions to the second-order
term, A2, is negative for attractive interactions and positive for repulsive interactions. Quan-
tum statistics also affects A2. For bosons, the contribution is negative, while for fermions it
is positive. The negative contribution for bosons can be understood by considering the Bose-
Einstein form for the phase-space occupancy, which provides a relatively stronger enhancement
to low-momentum particles. This lowers the average momentum of particles colliding with the
boundaries, which lowers the pressure relative to P = ρT . Similarly, the contribution is pos-
itive for fermions, as the average momentum of a particle in a Fermi gas is raised by quantum
statistics.

Like perturbation theory, virial expansions are only justifiable in the limit that they are unimpor-
tant, i.e., if the corrections are large you need more terms than you can calculate. For that reason,
the second-order coefficient is often calculated carefully from first principles, but subsequent co-
efficients are often inserted phenomenologically. The virial expansion will be considered more
rigorously in Section 3.5, where coefficients will be expressed in terms of phase shifts (only sec-
ond order) and perturbation theory.

3.2 The Van der Waals Eq. of State

All equations of state, P (ρ, T ), should behave as P = ρT at low density. The second-order
virial coefficient is usually negative, as long-range interactions are usually attractive and dom-
inate at low density. For molecules, the long range interaction usually originates from induced
dipoles attracting one another and falls off as 1/r6 at large r. At high densities, particles tend
to run out of space and repel one another as molecules begin to physically overlap, and the
contribution to the pressure from interactions tends to rise once again.

The Van der Waals parameterization of the equation of state incorporates both an attractive com-
ponent for low density and repulsion at high density,

P =
ρT

1− ρ/ρs
− aρ2. (3.2)
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Here, the second order virial coefficient is

A2 =
ρ0

ρs
−
aρ0

T
, (3.3)

and as long as a is large enough, the correction to the pressure to order ρ2 is negative.

At high density, the first term in Eq. (3.2) will dominate, and in fact P → ∞ as ρ → ρs. The
quantity ρs is the saturation density, as it is the highest density one can obtain before the pressure
jumps to infinity. As the temperature goes to zero, a system will approach the saturation density
if there is no pressure. The inverse of ρs is often referred to as the excluded volume. The Van der
Waals equation of state thus implies a hard-core interaction because densities can never surpass
ρs.

Example 3.1:
Using the Maxwell relation,

∂(P/T )

∂β

∣∣∣∣
N,V

= −
∂E

∂V

∣∣∣∣
N,T

,

derive the energy per particle E/N for a Van der Waals equation of state, as a function of ρ and
T .

First,
∂

∂β

(
P

T

)
=

∂

∂β

(
ρ

1− ρ/ρs
− βaρ2

)
= −aρ2.

Beggining with E/N = 3/2T at ρ = 0,

E

N
=

3

2
T +

1

N

∫ V

∞
dV aρ2 =

3

2
T −

∫ ρ

0

1

ρ2
dρ aρ2 =

3

2
T − aρ.

Remarkably, the energy per particle is independent of ρs.

If one plots P vs. V , the behavior is no longer monotonic for low T as seen in Fig. 3.1. For
temperatures below the critical temperature,

Tc =
8aρs

27
, (3.4)

multiple densities can provide the same pressure. We refer to the inflection point as the critical
point, at which Vc = 3/ρs, and Pc = aρ2

s/27. We will derive this expression shortly.

A region of densities for T < Tc is unstable to phase separation. To find the region we consider
the conditions for phase co-existence.

Tgas = Tliq, Pgas = Pliq, µgas = µliq. (3.5)

The first two conditions can be satisfied by taking any two points on the same isotherm in Fig.
3.1 that are at the same pressure. The third condition, that the chemical potentials are equal, can
also be illustrated with the isotherm. Beginning with

TdS = dE + PdV − µdN, TS = PV + E − µN, (3.6)
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Figure 3.1: The lower panel illustrates P
vs V for several isotherms for the Van der
Waals equation of state. For T < Tc,
the behavior is no longer monotonic and
phase separation can occur. For T =
Tc, there is an inflection point, where
d2P/dV 2 = dP/dV = 0. This is
the critical point. In the upper panel, the
T = 0.7·Tc isotherm is shown along with
the two points denoting the liquid and
gas densities. Graphically, these points
are found by requiring that the area be-
tween the isotherm and a horizontal line
connecting between two points on the
isotherm integrates to zero.

one can solve forNdµ,

d(E − TS + µN) = −PdV − SdT −Ndµ (3.7)
= −d(PV )

Ndµ = −SdT + V dP.

Following along an isotherm, dT = 0, and between two points illustrated in the upper panel of
Fig. 3.1 the change in the chemical potential is

µgas − µliq =

∫
vdP =

∫
d(Pv)−

∫
Pdv = Pgasvgas − Pliqvliq −

∫ vgas

vliq

Pdv = 0. (3.8)

Here, v = V/N is the volume per particle. The condition that µliq = µgas can then be stated
graphically by stating that the integrated area between the P vs. V isotherm in the upper panel
of Fig. 3.1 and the line between the two points is zero, i.e. there are equal amounts of area above
and below the line.

As an example of coexistence, Fig. 3.2 shows how the coexistence region is remarkably similar
for a variety of transitions when viewed after scaling the variables. Here, we make only a quick
remark that the actual form of the coexistence curve, and the behavior of the matter, in the region
near the critical point defies the simple Van der Waals picture. In that region, there are no longer
two distinct phases and the density fluctuates wildly. Critical phenomena represents a field in
itself, and will be discussed later in the course.
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Figure 3.2: Phase coexistence for a va-
riety of substances shows a remarkable
universality after being scaled. The
Van der Waals along with Maxwell
constructions fails when working very
close to Tc, but explains the behavior
well for T < Tc. This figure was com-
piled by Guggenheim in 1945 (J.Chem).

Example 3.2:
Solve for Tc, Pc and Vc in the Van der Waals equation of state using the scaled variables, p =
P/aρ2

s, t = T/aρs, v = ρsV/N = ρs/ρ.

In terms of these variables,

p =
t

v − 1
−

1

v2
.

For T < Tc there are two points where dP/dV = 0. At one of these points, d2P/dV 2 < 0. At
the critical point,

dp

dv
=
d2p

dv2
= 0.

If the second derivative were not zero,P vs. V would not be monotonic. These relations become:

tc

(vc − 1)2
= 2

1

v3
c

, 2
tc

(vc − 1)3
= 6

1

v4
c

.

This gives, vc = 3 and tc = 8/27. Plugging this into the expression for p, pc = 1/27. Back in
the usual variables,

ρc = ρs/3, Tc =
8

27
aρs, Pc =

1

27
aρ2

s.

3.3 Clausius-Clapeyron Equation

The Clausius-Clapeyron equation allows us to plot the coexistence line in a P-V diagram if given
the latent heat and the change of the volume per particle as one goes across the phase line on a
P vs. T representation of the phase boundary:

dP

dT
=

L/T

(V/N)gas − (V/N)liq

(3.9)
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The phase line can be found by inspecting the coexistence curve, e.g. Fig. 3.1, for the value of
the coexistence pressure for a given isotherm.

�

�

���

���	�

�

�
Figure 3.3: For phase coexistence, P , T and µ are con-
tinuous across the coexistence line. The requirement that
µ(B) − µ(A) is the same on both sides of the coexistence
line is the starting point for proving the Clausius-Clapeyron
equation.

To prove the relation consider the coexistence line in the P-V diagram sketched in Fig. 3.3.
Because P , T and µ are continuous across the line,

µ
(B)
liq − µ

(A)
liq = µ(B)

gas − µ
(A)
gas . (3.10)

BecauseNdµ = −SdT + V dP ,

−
(
S

N

)
liq

dT +

(
V

N

)
liq

dP = −
(
S

N

)
gas

dT +

(
V

N

)
gas

dP, (3.11)

dP

dT
=

(S/N)gas − (S/N)liq

(V/N)gas − (V/N)liq

.

Given that the latent heat is L = T∆S, this proves the relation. Because L is T∆S between
the two adjacent points across the phase boundary on the P vs. T coexistence line, it can be
identified with the heat added to change the phase if done either at constant T or at constant P .

3.4 Virial Expansion, Revisited

The grand canonical partition function, or equivalently the pressure, can then be expanded in
powers of eβµ,

P/T = B1e
βµ +B2e

2βµ + · · ·Bne
nβµ + · · · (3.12)

Given the coefficients for this expansion, Bn, one can then find the coefficient An for the virial
expansion, which is based on powers of the density.

The density, ρ = ∂P/∂µ, can also be expanded in powers of eβµ,

ρ = B1e
βµ + 2B2e

2βµ + · · ·nBne
nβµ + · · · (3.13)

Repeating the virial expansion,

P = ρT

[
A1 +

∞∑
n=2

An

(
ρ

ρ0

)n−1
]
, ρ0 ≡ B1 =

(2s+ 1)

(2π~)3

∫
d3p e−εp/T . (3.14)
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By inspection, one can determine the first two virial coefficients, A1 and A2, in terms of the
coefficientsBi,

A1 = 1, A2 = −B2/ρ0. (3.15)

The fact thatA2 andB2 have opposite signs is easy to understand. An attractive interaction will
increase both the density and the pressure by increasing the Boltzmann factor which behaves as
e−V/T . Because the density increase more due to the extra powers of n in Eq. (3.13), the ratio
of P/ρwill fall for attractive interactions. Subsequent coefficients are more difficult to calculate.
The next two are,

A3 = −2B3/ρ0 + 4B2
2/ρ

2
0, A4 = −3B4/ρ0 + 18B2B3/ρ

2
0 − 20B3

2/ρ
3
0. (3.16)

In Mayer’s cluster theory, one can make a further reduction and show that the complex terms
in A3, A4 · · · that include products of several powers of B can all be neglected if one only uses
“multiply connected” graphs (See Pathria). This is also true for perturbation theory, see Chapter
7.

Like perturbation theory, virial expansions are only justifiable in the limit that they are unim-
portant, i.e., either only the first few terms matter. For that reason, second-order coefficient are
often calculated carefully from first principles, but systems where the subsequent coefficients are
necessary, such as liquids, are often treated phenomenologically, e.g. the Van der Waals equation
of state.

3.5 Virial Coefficients from Phase Shifts

Quantum scattering theory can provide a simple means for calculating the second virial coeffi-
cient in terms of phase shifts. In scattering theory, the relative wave function is a distorted plane
wave, where the plane wave eiq·r is written as an expansion in partial waves,

eiq·r =
1

qr

∑
`

i`(2`+ 1)φ`(r)P`(cos θ), (3.17)

each of which is an eigenstate of angular momentum. Each partial wave can then be written as
an incoming piece plus an outgoing piece. The effect of a spherically symmetric potential is to
shift the phase of the outgoing part, leading to the following form at large r,

φ`(r →∞) ∼
eiδ`

qr
sin[qr/~− `π + δ`(q)]. (3.18)

If one considers the relative wave function to be confined to a spherical volume of radius R by
an infinite potential, the boundary condition is:

qR

~
− `π + δ` = nπ, n = 1, 2, · · · (3.19)

The density of states is then,

dn

dq
=

(2`+ 1)

π

(
R/~ +

dδ`

dq

)
,
dn

dε
=

(2`+ 1)

π

(
Rm/q~ +

dδ`

dε

)
(3.20)
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As compared to no interaction, the density of states is changed by an amount

∆
dn

dε
=

(2`+ 1)

π

dδ`

dε
(3.21)

The most transparent way to calculate the correction to the partition function is to consider
the addition to the density of states as a new mass state. If the phase shift jumped by π in a
small energy level with relative energy ε∗ (which is what happens with a narrow resonance), the
statistical effect would be identical to having a free particle with spin ` and massM = ma+mb

and an additional Boltzmann weight e−ε∗/T . From that perspective, one can write the correction
to lnZ as

lnZ = lnZ0 +
V

(2π~)3

∫
d3P e−P

2/2MT+2µ/T
∑
ε∗

e−ε
∗/T (3.22)

lnZ = lnZ0 +
V

(2π~)3

∫
d3P e−P

2/2MT+2µ/T
∑
`

∫
dε

(2`+ 1)

π

dδ`

dε
e−ε/T

= lnZ0 + e2µ/T
V (MT )3/2

(2π)3/2~3

∑
`

∫
dε

(2`+ 1)

π

dδ`

dε
e−ε/T .

By comparison with the definition of the virial expansion coefficients,

A2 = −23/2
∑
`

∫
dε

(2`+ 1)

π

dδ`

dε
e−ε/T . (3.23)

For bosons, the wave function is symmetrized, which eliminates any odd values for ` in the
partial wave expansion. It also doubles the contribution for even values of `. This adds an extra
power of 2 to the above expression, and the sum would cover only even `. For fermions, a
factor of 2 is also added, but the sum covers only odd `. In the real world, particles have spins,
and because only pairs of the same spin projection are identical, both odd and even values of `
contribute. An example is nn scattering. The spin half neutrons can have their intrinsic spins
combined as either a S = 1 triplet or a S = 0 singlet for which the spin component of the
wave functions are symmetric or antisymmetric respectively. The spatial wave functions are
then antisymmetric and symmetric respectively. Phase shifts are measured for both the triplet
(only odd `) and for the singlet (only even `). In this case the virial coefficient becomes:

A2 = −25/2

{ ∑
`=0,2,4...

∫
dε

(2`+ 1)

π

dδ`,S=1

dε
e−ε/T + 3

∑
`=1,3,5...

∫
dε

(2`+ 1)

π

dδ`,S=0

dε
e−ε/T

}
.

(3.24)
The real situation is a bit more complicated if one wants to accurately address the S = 1 terms.
First, due to spin-orbit coupling, m` and mS are not good quantum numbers, and one needs
to add the quantum number J to label the phase shifts. Secondly, the tensor interaction mixes
states with different ` if they have the same J (`must differ by even number to conserve parity).
These couplings are typical causes for headaches among nuclear physicists. Phase shifts for
nucleon-nucleon scattering are displayed in Fig. 3.4.

Example 3.3:

45



PHY 831 3 INTERACTING GASES AND THE LIQUID-GAS PHASE TRANSITION

Figure 3.4: Phase shifts for proton-proton and proton-neutron scattering compared to calculations using
a variety of nucleon-nucleon potentials, M. Piarulli et al., Phys. Rev. C 91 024003.

The scattering length a parameterizes the phase shift at low energy as:

δ`=0 = −ap/~.

For neutrons, a ≈ −2 × 10−14 m. Consider a neutron gas at a temperature of T = 4 × 10−21

Joules (room temperature), at what density will the correction to the pressure in a second-order
virial expansion be of the same strength as the ρT . DATA: ~ = 1.05 × 10−34 J·s, m = 1.67 ×
10−27 kg. Ignore the spin when making the estimate.

First lets calculate the virial coefficent using Eq. (3.23),

A2 = −23/2

∫
dε

1

π

dδ

dε
e−ε/T = −23/2

∫
dp

1

π

dδ

dp
e−ε/T

= 23/2
a

π~

∫
dp e−p

2/2mT = 23/2
a

~

√
mT

2π
≈ −6× 10−4.

Now, the first and second terms will be of the same order when,

−A2ρ = ρ0 =
(mT )3/2

(2π)3/2~3
≈ 1030 m−3.

Solving for ρ,
ρ ≈ 2× 1033.

The corresponding mass density, 3000 g/cm3, is hundreds of times higher than normal matter
densities, but is very low compared to the density of the nucleus,≈ 2× 1015 g/cm3. A realistic
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calculation would have to account for the fact the neutrons are spin-half objects, and also include
the effects of quantum degeneracy.

The phase shift expressions discussed here are not applicable once Coulomb is introduced into
the problem. Coulomb forces are long range, hence the scattered waves never fully emerge from
the influence of the force.

3.6 Problems

1. Consider a low density three-dimensional gas of non-relativistic spin-zero bosons of mass
m at temperature T = 1/β and chemical potential µ.

(a) Find ρ0 as defined in Eq. (3.1) in terms ofm and T .

(b) Expand the density ρ to second order in eβµ, i.e., to e2βµ. Express your answers for
this part and the next two parts in terms of ρ0.

(c) Expand ρ2 to second order in eβµ.

(d) Expand δP ≡ P − ρT to second order in eβµ. (Hint: it is easier if you use the
expression for P expanded in f0 = eβµ−βε, i.e., ln(1+f0 +f2

0 +f3
0 · · · ) = − ln(1−

f0), then expand the logarithm in powers of f0)

(e) Determine the second virial coefficient defined by Eq. (3.1).

2. Consider the Van der Waals equation of state in scaled variables,

p =
t

v − 1
−

1

v2
,

where p = P/aρ2
s, v = V/Vs, t = T/aρs.

(a) Derive the Maxwell relation,

∂(P/T )

∂β

∣∣∣∣
N,V

= −
∂E

∂V

∣∣∣∣
N,T

.

(b) Find the scaled energy per particle e ≡ E/(aρsN) as a function of v and t using the
Maxwell relation above. Begin with the fact that e = (3/2)t as v →∞.

(c) Show that the change of entropy/particle s = S/N between two values of v at a fixed
temperature t is:

sb − sa = ln[(vb − 1)/(va − 1)].

(d) Using the fact that ts = e+ pv − µ, show that

µb − µa = −
2

vb
+

2

va
+ t

[
vb

vb − 1
−

va

va − 1

]
− t ln

(
vb − 1

va − 1

)
.

(e) Show that as t → 0, pb will equal pa if vb → ∞ and va = 1 + t. Then, show that in
the same limit, µa will equal µb if vb = te1/t.
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(f) Find the latent heat L = t(sb − sa) for the small t limit. How does it compare with
the minimum of e at t = 0?

(g) At t = 0, the system will have p = 0 in order to minimize the energy. Using the
Clausius-Clapeyron equation, find dp/dt along the coexistence line at t = 0.

3. Using Eq. (3.23), calculate the second-order virial coefficient for a gas of distinguishable
non-relativistic particles of mass m at temperature T that interact through a hard core
potential,

V (r) =

{
∞ , r < a
0 , r > a

Consider only the s-wave contribution (valid at low T ).
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4 Dynamics of Liquids and Gases

Vision without action is a daydream. Action without vision is a nightmare. - Japanese proverb

4.1 “Adiabatic” Expansions

The science of thermodynamics was developed around engines. In particular, the constraints on
the efficiency of engines related to entropy are of both intellectual and practical interest.

One begins with
dE = TdS − PdV + µdN, (4.1)

where the term TdS is often referred to as the heat. Heat is not an energy, but is a change in
energy, and one should not refer to the amount of heat in a gas or liquid – only the amount
of heat added or removed from a gas or liquid. Adding energy without changing the particle
number or the volume will raise the entropy. The most common method for adding heat is
through thermal contact such as the microscopic transfer of energy between the molecules in
a cylinder and the sides of the cylinder. Below, we will that associating the change in entropy
depends on the assumption of a “slow” expansion.

An insulated gas is one for which there is no change in the energy aside from the work done
on the gas. Thus, for an insulated gas, Eq. (4.1) implies that insulating the gas is equivalent
to fixing the entropy and particle number. However, this is clearly not the case if the volume
changes suddenly. If a piston is instantly moved so that the volume of a cylinder is doubled,
the gas molecules will not have time to change their energy, and dE would be zero. In this
case, the entropy of each molecule, which is proportional to ln[(mT )3/2V ], would eventually
increase by an amount ln 2 due to the increase in volume once the gas has re-equilibrated in the
larger volume. Thus, an insulated system could have a change in entropy if the boundaries are
suddenly changed. In fact, Eq. (4.1) assumes that the system changes slowly. Otherwise, the
gas will not do the work PdV . Here, “slowly” requires that the boundaries move much more
slowly than the molecular velocity of the gas.

One must remain cognizant of the meaning of several terms, some of which are often thrown
about rather casually, with disregard for the confusion that might ensue from the carelessness.
Some of the terms are:

1. isentropic: Entropy is conserved, ∆S = 0.

2. insulated: No energy is transferred from thermal contact with the outside.

3. adiabatic: Different meanings to different people, and sometimes different meanings to the
same person depending on the context. Sometimes means “slowly”, sometimes means
∆S = 0, and sometimes means “quickly”.

4. reversible: Usually means ∆S = 0.

The slowness considerations of the previous paragraph are the source of much confusion related
to the definition of the word “adiabatic”. In many instances (especially to engineers), adiabatic
means that no heat enters a gas, ∆S = 0. Whereas for many problems, adiabatic means that
things change slowly. For instance, if reading a quantum mechanics book, one might encounter
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the example of a particle in the ground state of a square well that is expanded slowly. The
text might simply say that the well expands adiabatically. This might be contrasted with the
sudden expansion of the well, and a question might be posed regarding the probability that
the particle remains in the ground state after the well changed in both circumstances. For the
particle in the well, it will remain in the ground state in a slow (adiabatic) expansion, but will
find its probability split between many states in a sudden expansion. In the adiabatic case, the
entropy remains zero because the system is in one state, whereas the entropy becomes finite for
the sudden expansion. Thus, in this case slowness of the expansion and conserving entropy are
synonymous and the term “adiabatic” is not ambiguous. However, this is not always the case.
Some introductory physics books describe an adiabatic expansion as being rapid. The intent of
such a statement is that in a rapid expansion, heat has no time to leak out of the container, so
that entropy is conserved. However, it must not be rapid relative to the thermal velocity of the
gas molecules, or one would create entropy because of the lack of slowness.

Example 4.1:
A gas of Na indistinguishable, non-relativistic, spinless, non-degenerate, weakly interacting ‘a’
particles of massma are confined to half of an insulated box by a barrier. Each half has a volume
V . The other half of the box is a vacuum. The particles are thermalized at a temperature T when
the barrier is removed suddenly.

a) What is the average energy and entropy per particle before the barrier is removed?
– The energy per particle for a non-degenerate non-relativistic gas is 3T/2. The entropy
per particle is:

S/N = (lnZ)/N + βE/N

Z =
1

N !

(
V

(2π~)3

∫
d3p e−p

2/2mT

)N
=

1

N !
V N

(
mT

2π~2

)3N/2

,

where Z, E and S are the partition function, average energy and entropy. Using E/N =
(3/2)T and ln(N !) ≈ N lnN −N ,

S/N =
5

2
+ ln

[
(V/N)

(
mT

2π~2

)3/2
]
.

b) What is the average energy and entropy per particle after the barrier is removed and the
particles fill the entire volume?
– The energy is the same and the entropy per particle increases by an amount ln 2 due to
the increase in volume.

c) The barrier is instead slowly pushed to the right like a piston. What is the average energy
and entropy per particle be after the particles fill the entire volume?
– In this case the entropy is fixed. If V/N doubles, T 3/2 must decrease by a factor of 2,
which reduces T and E/N by a factor of 2−2/3.

d) The experiment is changed so that a separate type of ‘b’ particles populate the empty half
of the box before the barrier is removed. The particles are at the same initial density and
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temperature, and the masses and spins of the two types of particles are identical. What is
the average energy and entropy per particle after the partition is suddenly removed and
the gases have thoroughly mixed?
– The volume that plays a role in the entropy is the volume per identical particle. Though
the density is the same, the volume per identical particle has doubled, thus increasing the
entropy per particle by an amount ln 2. The energy per particle is unchanged.

4.2 Molecular Excitations and Thermodynamics

Atoms can be excited by moving electrons into higher-lying states. Molecules also have intrinsic
excitations due to vibration, rotation or other internal degrees of freedom. Nuclei also have a
rich excitation spectrum, including single-particle-like excitations as well as collective rotational
and vibrational states. These states greatly affect the thermodynamic properties of the matter.
For a single atom, the average internal energy per particle will be:

〈Eint/N〉 = −
∂

∂β
ln zint =

∑
` d`ε`e

−ε`/T

zint

, (4.2)

zint ≡
∑
`

d`e
−ε`/T ,

where d` is the degeneracy of the energy level `.

For a spectrum of one-dimensional harmonic oscillator levels separated by ~ω,

zint = 1 + e−β~ω + e−2β~ω + e−3β~ω · · · (4.3)

=
1

1− e−β~ω
.

The average internal energy is then,

〈Eint/N〉 = ~ω
e−β~ω

1− e−β~ω
, (4.4)

which looks exactly like what we had for bosons in specific energy level because those energies
were also evenly spaced, 0, ε, 2ε · · · .
Taking the high and low T limits in Eq. (4.4),

〈Eint/N〉 =

{
~ωe−~ω/T , T << ~ω

T, T >> ~ω (4.5)

Thus, the excitations can be neglected if the temperature is much less than the energy required to
excite the lowest level. If the temperature is much higher than ~ω, the harmonic excitations con-
tribute just as one would expect from considering the equipartition theorem result for a classical
harmonic oscillator, where the equipartition theorem states that for each degree of freedom that
appears quadratically in the Hamiltonian, an amount of energy T/2 is added to the system. For
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a one-dimensional harmonic oscillator, both x and px contribute T/2. Vibrational excitations of
diatomic molecules tend to behave like a one-dimensional harmonic oscillator, contributing one
unit of T per particle for temperatures much higher than ~ω. For most diatomic molecules, ~ω is
thousands of degrees K, which means that vibrational excitations can be largely ignored at room
temperature.

Any rotating object whose position can be denoted by one unit vector (or direction θ and φ), and
whose energy is independent of such energies, will have a rotational spectra,

εrot =
~2`(`+ 1)

2I
, (4.6)

where I is the moment of inertia of the molecule. Because the orientation of a diatomic molecule
is determined by a single unit vector, they will have such a spectra. Along with the degeneracy
of (2`+ 1), the internal partition function is given by the sum,

zrot =
∞∑
`=0

(2`+ 1) exp
{
−β~2`(`+ 1)/2I

}
. (4.7)

For T << ~2/I , only the ` = 0 contribution matters and zrot → 1. For T >> ~2/I , many
terms in the sum contribute, which allows the sum to be approximated by an integral,

zrot(T >> ~2/I) = 2

∫
d` `e−`

2/(2IT/~2) (4.8)

= 2IT/~2.

The energy (= −∂ ln z/∂β) then becomes

〈Erot/N〉|T>>~2/I = T. (4.9)

The characteristic rotational energy ~2/2I is below room temperature for most molecules. Thus,
for a dilute gas of diatomic molecules, the energy per particle is:

〈
E

N

〉
≈


3T/2, T << ~2/2I
5T/2, ~2/2I << T << ~ωvibrational

7T/2, T >> ~ωvibrational

(4.10)

The specific heat per particle is defined in terms of the heat required to raise the temperature,

CV ≡
1

N
T
dS

dT

∣∣∣∣
N,V

, CP ≡
1

N
T
dS

dT

∣∣∣∣
N,P

. (4.11)

Using the fundamental thermodynamic relation, TdS = dE + PdV − µdN ,

TdS|N,V = dE, (4.12)

and because the energy of the gas depends only on the temperature,E/N = 3T/2, 5T/2, 7T/2,
CV for a gas will be of the form

CV = 3/2, 5/2, 7/2. (4.13)
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Calculating CP is not quite so easy,

TdS|P,N = dE + PdV. (4.14)

Again the dE term is no trouble for a gas because the energy per particle is a function of the
temperature only, but one needs to re-express PdV in terms of dT . To do this, one differentiates
the ideal gas law, PV = NT at fixed P andN to obtain:

PdV |P,N = NdT. (4.15)

Thus at constant pressure the fundamental thermodynamic relations becomes,

TdS|P,N = (dE + PdV ) = N (CV + 1) dT, (4.16)
CP = CV + 1. (4.17)

For the three limits above, CP = 5/2, 7/2, 9/2. If CP and CV are defined as TdS/dT , not per
particle, the relation becomes

CP = CV +N. (4.18)

Example 4.2:
Consider an isentropic expansion for a dilute gas ofO2 molecules near room temperature, where
the volume changes from Va to Vb.

• Find the final temperature Tb in terms of the volumes and the original temperature Ta.

Using conservation of entropy and particle number, the fundamental thermodynamic re-
lation gives:

TdS = 0 = dE + PdV = N (CV dT + TdV/V ) ,

with CV = 5/2. This becomes

(5/2)

∫ Tb

Ta

dT/T = −
∫ Vb

Va

dV/V,

Tb = Ta

(
Vb

Va

)−2/5

.

• Find the final pressure Pb in terms of the original pressure Pa and Va and Vb.

Using the ideal gas law, P = NT/V ,

Pb

Pa
=
Tb

Ta

Va

Vb
=

(
Vb

Va

)−7/5

.

Often the ratio CP/CV is referred to as γ, which in this case is 7/5. The above equation
can then be equivalently stated as

PV γ|N,S = constant, γ = CP/CV .
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4.3 Efficiency of Engines: The Third Law of Thermodynamics

The third law of thermodynamics is nothing more than a statement that the entropy of the entire
system must increase. For a closed amount of gas that is heated, where the gas does work as it
expands, there is a limit on the efficiency of the engine. Because the cycle returns to its original
volume and temperature, the net work done by the gas must equal the net heat added during
the cycle. Similarly, because the entropy must return to its original value, entropy must leave
the system during part of the cycle to compensate for the entropy gained during the part of the
cycle where heat is added. The exhaust heat is

QX = TX∆S, (4.19)

where ∆S is determined by the heat added during the heating portion of the cycle,

TH∆S = QH. (4.20)

Because the net ∆S in a closed cycle will be zero, if one wishes to minimize the exhaust heat
and maximize the heat flowing in, one should design a cycle so that the heat flows in while the
cycle has its highest temperature and is exhausted at the coldest portion of the cycle. By having
the entropy leave when the temperature is as low as possible, QX will be as small as possible,
and by having the heat enter when TH is at its highest value, ∆S will be as small as possible,
which also helps minimizeQX . All other parts of the cycle should follow isentropic paths. Such
a cycle is known as the Carnot cycle, and has four parts as illustrated in Fig. 4.1.

P

Vc

Figure 4.1: Illustration of Carnot Cycle.
(a-b) From a hot and compressed stage characterized
by TH , Pa and Va, the system expands isothermally
to Pb, and Vb. Because the temperature is constant,
PbVb = PaVa. Heat is added during this stage.
(b-c) At fixed entropy, the system is cooled to a lower
temperature TX . For this segment, PcV γ

c = PbV
γ
b .

(c-d) The gas is compressed isothermally at temper-
ature TX until it returns to the original entropy, at
which point the pressure and volume are Pd and Vd.
Heat is exhausted during this stage.
(d-a) At fixed entropy, the gas is compressed back to
its original temperature TH , pressure and volume. To
conserve entropy, PdV

γ
d = PaV

γ
a .

The efficiency of a Carnot engine is defined as the work, W = QH −QX , divided by the input
energyQH ,

e =
W

QH

=
QH −QX

QH

. (4.21)

Because entropy is only added at the points where heat is added, and because the entropy added
at TH equals the entropy lost at TX ,

e =
(TH − TX)∆S

TH∆S
= 1−

TX

TH
. (4.22)
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The maximum efficiency is thus determined by the temperatures at which heat enters and is
exhausted during the cycle. For that reason, diesel engines, which burn hotter than gasoline
engines, are more efficient.

Example 4.3:
A Carnot engine uses a gas whose ratio of specific heats is γ = CP/CV . Express the efficiency
in terms of γ and the ratio of volumes Vc/Vb from Fig. 4.1.

Because the efficiency is given in terms of the ratio of the temperatures, one must express TH/TX
in terms of the volumes. For the isentropic expansion from b− c,

PbV
γ
b = PcV

γ
c ,

which when combined with the ideal gas law, PV = NT ,

THV
γ−1
b = TXV

γ−1
c , or

TH

TX
=

(
Vc

Vb

)γ−1

.

This gives

e = 1−
TX

TH
= 1−

(
Vb

Vc

)γ−1

.

The efficiency thus improves for a higher compression engine (though the compression that ap-
pears here is only that between the b and c point on the cycle). Whereas the compression in
a gasoline engine is typically between 7 and 11, diesel engines have compression ratios from
14 to 25. The best gasoline powered engines (gasoline direct injection) approach efficiencies of
35%, whereas the best diesel engines can often reach 45% efficiency. However, due to not run-
ning at peak conditions, efficiencies are typically quite a bit less. Power plants burning fossil
fuels with large turbines typically maintain efficiencies near 40% while generating electricity. By
building plants that operate at higher pressures (essentially higher compressions), the efficien-
cies increase. Whereas most power plants create steam ∼ 200 bar and achieve efficiencies near
40%, super-critical-pressure power plants operate near 300 bar and create power with & 45%
efficiency.

4.4 Hydrodynamics

Hydrodynamics explains the dynamics of gases and fluids in the limit that the fluid remains
locally equilibrated during the motion. Mathematically, this condition can be stated in terms
of the characteristic times associated with the fluid’s expansion compared to the characteristic
times associated with microscopic equilibration. For instance, the atoms in a gas or fluid will ki-
netically equilibrate after a few collisions, thus the relevant microscopic time scale is the collision
time τcoll. For an isotropic expansion, the expansion rate can be defined as

1

τexp

∼
∣∣∣∣ ρ̇ρ
∣∣∣∣ , (4.23)
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where ρ represents any conserved charge or number density. Hydrodynamics is valid in the
limit τexp >> τcoll. The expansion rate can also be related to the divergence of velocity through
the equation of continuity,

D

Dt
ρ = −ρ∇ · ~v,

D

Dt
≡

∂

∂t
+ ~v · ∇, (4.24)

HereD/Dt = ∂t+~v·∇ is the rate of change as observed by an co-mover, i.e., one whose velocity
is the same as that of the fluid element. The expansion rate is then equal to the divergence of the
velocity,

1/τexp = ∇ · ~v. (4.25)
For anisotropic expansions, one might have a condition where∇·~v = 0 even though the various
components ∂ivj 6= 0, e.g. collapsing along the x axis while expanding along the y axis. The
characteristic expansion time would then be defined by the largest components of the velocity
gradient, |∂ivj|. Ideal hydrodynamics applies when τ−1

exp is much much less than the collision
rate, τ−1

coll. When τ−1
exp is less than τ−1

coll, but not much much less than the collision rate, one can
apply viscous hydrodynamics, which we consider later. Ideal hydrodynamics is based on the
assumption that velocity gradients are always sufficiently small that the matter is always locally
equilibrated.

Ideal hydrodynamics involves solving three equations simultaneously. The first equation de-
scribes the acceleration of the matter,

D~v

Dt
= −

1

ρm
∇P, (4.26)

where ρm is the mass density. If one considers a slab of volume δV = Aδx, and multiplies
both sides of Eq. (4.26) for the xth component by ρmδV , the l.h.s. becomes max and the r.h.s.
becomes P (x)A − P (x + δx)A, which is the net force pushing on the volume element in the
x direction. Thus, this expression is simply the differential expression of ~F = m~a, where the
force is the pressure multiplied by the area.

The second equation expresses the fact that entropy is conserved, or equivalently that dU =
−PdV where U is the thermal energy,

DU

Dt
= −P

DV

Dt
. (4.27)

If one considers a cubic volume element, V = LxLyLz, one can derive that

dV = dLxLyLz + LxdLyLz + LxLydLz (4.28)
dLx = dt[vx(x = Lx)− vi(x = 0)] = dtLx∂xvx,

DV

Dt
= V∇ · ~v.

This gives
DU

Dt
= −PV∇ · ~v (4.29)

D(U/V )

Dt
= −(P + U/V )∇ · ~v

Dε

Dt
= −(P + ε)∇ · ~v,
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where the final equation simply uses ε = U/V to refer to the energy density as determined in
the frame of the matter.

The third equation is simply the equation of continuity for conserved charges. Summarizing,
hydrodynamic evolution is determined by three equations:

D~v

Dt
= −

1

ρm
∇P (4.30)

Dε

Dt
= −(P + ε)∇ · ~v,

Dρ

Dt
= −ρ∇ · ~v,

(4.31)

Respectively, the three equations express: (1) that the net force on an element is the integrated
pressure pushing on its surface, (2) entropy conservation and (3) particle number conservation.
The co-moving derivative,D/Dt = ∂t + ~v · ∇, represents the time derivative as viewed by an
observer in the frame where ~v = 0. When solving the hydrodynamic equations of motion, there
are three variables, ρ, ε and ~v, which one integrates forward with the three equations of motion.
The pressure and mass densities are not free variables as P is uniquely determined by ρ and ε,
and ρm is determined by ρ. In many cases, there are multiple conserved currents. In that case
one writes conservation laws for a vector of charge densities ρ.

Viscous hydrodynamics incorporates corrections proportional to the expansion rate divided by
the equilibration rate. Because the expansion rate is proportional to the derivative of the velocity,
the acceleration from Eq. (4.26) is expanded to include terms which are linear in derivatives of
the velocity such as:

Dvi

Dt
= −

1

ρm

{
∂iP − ∂j[ηωij]− ∂i[ζ∇ · ~v] +

D

Dt
[κ∂iT ]

}
, (4.32)

ωij ≡ ∂jvi + ∂ivj − (2/3)δij(∇ · ~v).

The equation expressing entropy conservation is also altered:

Dε

Dt
= −(P + ε)∇ · ~v + η

∑
ij

ω2
ij + ζ(∇ · ~v)2 + κ∇2T. (4.33)

These equations are known as Navier-Stokes hydrodynamics. The coefficient ζ is the referred to
as the bulk viscosity. In an expanding system it effectively lowers the pressure proportional to
∇ · ~v. The shear viscosity η only manifests itself when the velocity gradients are anisotropic, as
ω = 0 for a rotationally symmetric velocity gradient, e.g., ~v = ~v0 + a~r. The coefficient κ is the
heat conductivity and comes from the fact that once the system is not equilibrated, the energy
might flow with a different velocity than the particle number. This term appears in variety of
forms in the literature depending on whether the velocity ~v is that of the particles (Eckart frame)
or that of the energy (Landau frame). For radiatively dominated systems it is more practical to
use the energy and momentum density to define the velocity, i.e., the velocity is that required to
make the momentum density zero. In the limit where temperatures are very high, this last term
can be neglected.
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Example 4.4:
Consider matter which initially has a uniform temperature T0 and a three-dimensional density
profile,

ρ(r, t = 0) = ρ0e
−r2/2R2

0,

and expands according to an equation of state P = ρT according to ideal hydrodynamics.

• Show that if the subsequent evolution of the density and temperature are parameterized by

ρ(r, t) = ρ0

R3
0

R3(t)
e−r

2/2R(t)2, T (r, t) = T (t)

that entropy will be conserved if

R2(t)T (t) = R2
0T0.

The entropy per particle, σ = S/N , can be calculated by considering a single particle in a
volume V/N in the canonical ensemble (see discussion of Gibb’s paradox in chapter 2),

σ =
(βE + lnZC)

N
= (3/2) + ln

[
(V/N)

(2π~)3

∫
d3pe−βεp

]
= 5/2 + ln

[
1

ρ

(
mT

2π~2

)3/2
]
,

The total entropy is then

S(t) =

∫
d3rρ(r)σ(r) = constant +

∫
d3r ρ(r) ln

[
T 3/2/ρ

]
= constant′ +

∫
d3r ρ(r)

{
ln(T 3/2R3) + r2/2R2

}
= constant′ + (N/2)〈r2/R2〉+N ln(T 3/2R3)

= constant′′ +N ln(T 3/2R3).

In the second to the last step, the average 〈r2/R2〉 = 3, and was absorbed into the con-
stant. The remaining time dependence comes from the fact that T and R are functions of
time. Thus the total entropy will be constant ifR2T is constant.

• Assuming that the velocity profile is linear,

~v(r, t) = A(t)~r,

findA(t) andR(t) that satisfy the hydrodynamic equations of motion and current conser-
vation.

Current conservation leads to the expression,

0 =
∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

(
∂v

∂r
+ 2

v

r

)
= ρ

{
−

3Ṙ

R
+
r2

R3
Ṙ−Ar

r

R2
+ 3A

}
,
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which fortunately can be satisfied for all r if

Ṙ(t) = A(t)R(t).

Next we consider the equations of motion,

∂v

∂t
+ v

∂v

∂r
=
−1

mρ

∂P

∂r
=
−T
mρ

∂ρ

∂r

Ȧr +A2r =
Tr

mR2
.

Again, the equations of motion can satisfied for all r if

Ȧ(t) +A2(t) =
T (t)

mR2(t)

After substituting for T using the fact that R2T = R2
0T0, we have two equations for the

evolution ofA andR,

Ṙ(t) = A(t)R(t), Ȧ(t) +A2(t) =
T0

m

R2
0

R4(t)
.

Using the first equation to eliminateA and Ȧ in the second equation,

mR̈(t) =
R2

0T0

R3(t)
.

This can be solved by noting that the term on the right looks like a force affecting a particle
of mass m at position R where the potential is V (R) = R2

0T0/2R
2. Given the potential

one can solve for the trajectory with

t =

∫ R

R0

dx

v
=

∫ R

R0

dx√
2(E − V (x))/m

.

The subsequent integration yields:

R(t)2 = R2
0 +

(
T0

m

)
t2, A(t) =

(
T0

m

)
t

R2(t)
.

The temperature can then be found by T = T0R
2
0/R

2.

4.5 Relativistic Hydrodynamics

Some of the most important applications of hydrodynamics involve relativistic motion. These
include astronomical applications as well as some laboratory applications such as relativistic
heavy ion collisions. In some cases, such as black holes, general relativity comes into play as
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well. Hydrodynamics can incorporate special relativity in a most elegant fashion by considering
the stress energy tensor,

Tαβ = (P + ε)uαuβ − Pgαβ, (4.34)
where ε is the energy density in the frame of the fluid ε = U/V , and uα is the relativistic
four velocity. The equations of motion for hydrodynamics and for entropy conservation are
expressed as

∂αT
αβ = 0. (4.35)

This is effectively four separate conservation equations, one for each value of β. To see that these
represent the equations of motion for hydrodynamics, one can view the system in a frame where
the velocities are small, and if they reproduce the non-relativistic equations in that frame, they
will be correct in all frames because they have the correct Lorentz form. To see this, we write the
4× 4 stress-energy tensor for the limit where u = (1, vx, vy, vz),

Tαβ =


ε (P + ε)vx (P + ε)vy (P + ε)vz

(P + ε)vx −P 0 0
(P + ε)vy 0 −P 0
(P + ε)vz 0 0 −P

 (4.36)

By inspection one can see that the ∂αTα0 = 0 leads to the equation for entropy conservation,
Eq. (4.29). The other three equations, ∂αTαi = 0, become,

∂~v

∂t
= −

1

P + ε
∇P. (4.37)

In the non-relativistic limit P + ε ∼ ρm, and these equations reproduce the non-relativisitic
expression for acceleration. Finally, after writing the equation for current conservation relativis-
tically, ∂α(ρuα) = 0, all the non-relativistic equations are satisfied, and if they are satisfied
in one frame, they must be satisfied in all frames given that they have a manifestly consistent
Lorentz structure.

One might ask about whether the energy density includes the vacuum energy. In that case there
is also a vacuum energy. By “vacuum”, one refers to the energy density at zero temperature and
particle density. In that case, the pressure is

Pvac = −
dEvac

dV
= −

d(εvacV )

dV
= −εvac, (4.38)

where εvac and Pvac denote the vacuum energy density and pressure. Thus, the P + ε term in
relativistic hydrodynamics is insensitive to the vacuum energy density.

4.6 Hydrodynamics and Sound

To see how a sound wave is a hydrodynamic wave, we linearize the equations of motion and
the equation of continuity, keeping terms only of first order in the velocity ~v, and first order in
the deviation of the mass density, δρm (ρm = ρ(0)

m + δρm),

∂~v

∂t
= −

(dP/dρm)|S
ρ

(0)
m

∇δρm, (4.39)

∂δρm

∂t
= −ρ(0)

m ∇ · ~v.
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Through substitution, one can eliminate the ~v in the equations by taking the divergence of the
upper equation and comparing to the ∂t of the second equation.

∂2

∂t2
δρm =

dP

dρm

∣∣∣∣
S

∇2δρm. (4.40)

The solution to this equation is a cosine wave,

δρm(~r, t) = A cos (~k · ~r − ωt+ φ), (4.41)

where φ is an arbitrary phase and the speed of the wave is

cs = ω/k =

√
dP

dρm

∣∣∣∣
S

. (4.42)

One could have performed the substitution to eliminate δρm rather than v, to obtain the com-
panion expression,

∂2

∂t2
δ~v = c2

s∇
2~v, (4.43)

for which the corresponding solution for the velocity would be,

~v(~r, t) = −A
cs

ρ
(0)
m

cos (~k · ~r − ωt+ φ), (4.44)

where again ω/k = cs.

If matter is in a region where c2
s = dP/dρm|S < 0, the speed of sound is imaginary. This means

that for a real wavelength λ = 2π/k, the frequency ω is imaginary. Physically, this signals
unstable modes which grow exponentially in time. This can occur for matter which suddenly
finds itself deep inside a density-temperature region for which it would prefer to separate into
two separate phases. See problem 7 of this chapter.

4.7 The Boltzmann Equation

When local kinetic equilibrium is far from being maintained, even viscous hydrodynamics can-
not be justified. Fortunately, for many of the examples where hydrodynamic description is un-
warranted, Boltzmann descriptions are applicable. The Boltzmann approach involves following
the trajectories of individual particles moving through a mean field punctuated by random col-
lisions. The probability of having collisions is assumed to be independent of the particle’s past
history and correlations with other particles are explicitly ignored. I.e., the chance of encoun-
tering a particle depends only on the particles momentum and position, and the average phase
space density of the system. Thus, the Boltzmann description is effectively a one-body theory. A
Boltzmann description is justified if two criteria are met:

• The particles are sufficiently dilute that classical trajectories do not violate the uncertainty
principle. Such violations occur when the collision time falls below the ~/T . Many exam-
ples satisfy this criteria, including most liquids.
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• Correlations between particles in space and time are negligible. By definition, liquids are
tightly correlated. Applications of the Boltzmann equations is then questionable, however,
strongly correlated systems are often ideal candidates for hydrodynamics.

The Boltzmann equation represents a tool for solving for the evolution of the phase space density
f(~p, ~r, t) a.k.a. the phase space occupancy, which is defined by

f(~p, ~r, t) =
1

(2S + 1)

dN

d3pd3r/(2π~)3
. (4.45)

The definition is such that f = 1 corresponds to one particle per single-particle quantum state.
In a kinetically thermalized system, f would be given by the Bose or Fermi distributions, and
at each point in coordinate space, a few parameters, T (x, t), µ(x, t) and the collective veloc-
ity ~v(x, t), would determine the entire momentum dependence. In contrast, a Boltzmann ap-
proach requires storing the entire structure of f(~p, ~r, t). Thus, it may involve discretizing both
coordinate and momentum space, i.e. storing f(~p, ~r) in a six-dimensional mesh. Because the
Boltzmann equation represents the evolution of uncorrelated particles, the Boltzmann equation
can also be represented by simulating sample particles colliding through the fluid with specified
cross sections. If you over-sample the particles by a factor Nsample and reduce the cross sec-
tions by the same factor, you wash out correlations and the solution approaches the Boltzmann
equation for largeNsample.

In the absence of interaction, particles move in uniform trajectories and the Boltzmann equation
is simple,

∂f

∂t
+ ~v~p · ∇f = 0. (4.46)

This simply states that the co-moving derivative,D/Dt = ∂t + v∂x, of the phase space density
of particles with zero velocity is zero. This can be understood by considering a small phase-space
element, ∆pδx, centered around p = 0. If the average number of particles in that element is
n∆, that number will not change over time because the particles in that element are not moving.

Adding external forces,

0 =
∂f

∂t
+ ~v~p · ∇f +

d~p

dt
· ∇pf (4.47)

=
∂f

∂t
+ ~v~p · ∇f + ~F · ∇pf.

Here, the force ~F acts like an external field. It could originate from an external source or it could
be the mean field driven by the phase space density itself. After adding this term, the equation
now states that after adding an external force, the phase space density will be unchanged if you
move and accelerate with the particles. Thus, in the absence of collisions, you can choose any
particle with momentum ~p0 at position ~r0, and as you follow the trajectory through time, the
phase space density evaluated at that particle’s new momentum and position will be the same
as it was initially. This can be understood physically by stating that if there are n particles in
a phase space cell, that the same n particles will be in that phase space cell if you follow its
trajectory.
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The fact that the number of particles in a phase space cell is unchanged is not a trivial statement.
If one were to choose a phase space cell of dimensions dx, dy, dz, dpx, dpy, dpz, then follow the
trajectories of the points within the cell, the new phase space cell would be distorted in shape.
Despite the fact that dp′x 6= dpx, · · · , the product d3p′d3r′ would equal the original phase space
volume d3pd3r. This result is known as the Liouville theorem. If one considers the number of
effective states within a volume, violating the Liouville theorem would involve either inserting
or removing quantum states into the system. As long as the momenta and coordinates satisfy
the commutation relation [p, x] = i~, the number of states must be fixed. The Liouville theorem
can also be applied to other combinations of coordinates and their canonical momentum, such
as Lz and φ.

To prove the Liouville theorem we consider a rectangular cell of dimensions ∆pi and ∆xi. If the
boundaries of the cell move with the velocities corresponding to the fluid velocity at that point
of the boundary, the number of particles in the cell will remain fixed. In other words, the fluid
element is defined by a fixed number of neighboring particles, and the volume of that element
can grow or distort in the presence of a velocity gradient. The phase space density will then
remain fixed if the phase-space volume of the cell,

∆Ω =
1

(2π~)3

∏
i

∆pi∆xi, (4.48)

remains fixed. In a time step dt the widths ∆pi and ∆xi change by amounts,

d∆pi = dt∆pi
∂Fi(p, x)

∂pi
, (4.49)

d∆xi = dt∆xi
∂vi(p, x)

∂xi
.

If v is only a function of p, e.g. v = p/E(p) and if Fi is only a funciton of x, it is clear that the
phase space volume is fixed. However, it remains fixed even if there are momentum-dependent
forces or position dependent velocities, as can be seen by considering Hamiltonians Eq.s of mo-
tion,

Fi = −
∂H

∂xi
, (4.50)

vi =
∂H

∂pi
, (4.51)

one finds

d(∆xi∆pi) = ∆xid∆pi + ∆pid∆xi = ∆xi∆pidt

(
−

∂2H

∂xi∂pi
+

∂2H

∂pi∂xi

)
= 0. (4.52)

One of the most notable consequences of the Liouville theorem comes in beam dynamics, where
the magnetic forces depend on velocity. Magnets can focus charged particle beams, thus narrow-
ing them down to a small region. However, this focusing is always accompanied by broadening
the distribution in momentum space. Conversely, increasing the momentum resolution of a
beam always broadens the beam spot in coordinate space.
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Collisions ruin the continuity of trajectories, and thus violate Liouville’s theorem. They also
represent the only means towards achieving thermalization. Collisions are incorporated into the
Boltzmann equation through the expression,

∂f(~p, ~r, t)

∂t
+ ~v~p · ∇f(~p, ~r, t) + ~F · ∇pf(~p, ~r, t) (4.53)

=

∫
d3p′b

(2π~)3
dΩ vrel

dσ(~pa, ~pb → ~p, ~p′b)

dΩ
f(~pa, ~r, t)f(~pb, ~r, t)

−
∫

d3pb

(2π~)3
dΩ vrel

dσ(~p, ~pb → ~p′a, ~p
′
b)

dΩ
f(~p, ~r, t)f(~pb, ~r, t)

Here, vrel is the magnitude of the relative velocity between the incoming particles with momenta
~pa and ~pb, and Ω refers to the angle between the incoming and outgoing relative momentum.
For the first term, if one knows the two outgoing momenta ~p′b and ~p, and the scattering angle
Ω, the incoming momenta ~pa and ~pb are determined by energy and momentum conservation.
Similarly, knowing ~p and ~pb in the second term, along with Ω, determines the two outgoing
momenta ~p′a and ~p′b. The first term on the r.h.s. of Eq. (4.53) is the gain term due to particles
with momentum ~pa and ~pb scattering into the state ~p. The second term is the loss term and
represents the scattering of a particle with momentum ~p with momentum ~pb. Given either both
outgoing momentum (first term on r.h.s.) or incoming (second term on r.h.s.), momentum and
energy conservation along with the angle Ω determine the other two momenta.

The expression in Eq. (4.53) is what is usually referred to as the Boltzmann equation, though one
might still call it the Boltzmann equation after adding a few options. One such option involves
making the scattering kernel non-local. In the kernel above, the a and b particles are assumed
to be at the same location. It is straight-forward, though a bit tedious, to add a dependence on
~ra − ~rb to the cross section so that the a and b particles scatter at ~ra and ~rb respectively. This
would also add another layer of integration.

A more common extension to the Boltzmann equation involves incorporating quantum statistics
by replacing the products of phase space densities of the outgoing particles,

f(~pa, ~r)f(~pb, ~r)→ f(~pa, ~r)f(~pb, ~r)[1± f(~p′a, ~r)][1± f(~p′b, ~r)]. (4.54)

With this extension, the equation is sometimes referred to as the Vlasov equation, or the Boltzmann-
Uehling-Uhlenbeck equation. The enhancement (Boson) or suppression (Fermion) factors will
push the system towards an equilibrated Bose or Fermi distribution. To see how this is ac-
complished we consider a single momentum mode p, and assume that the rate at which the
population changes is:

∂fp

∂t
= Ap −Bpfp. (4.55)

Here, Ap is the rate at which scatterings fill the level p and B is the rate at which a particle will
leave the level if it is already present. If the population equilibrates at fp = e−β(εp−µ), the ratio
of the coefficients must be:

Ap/Bp = e−β(εp−µ). (4.56)

The addition of the enhancement/suppression factors alters the rate equation,

∂fp

∂t
= Ap(1± fp)−Bpfp. (4.57)
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Solving for the new equilibrated phase space density,

fp =
Ap

Bp ∓Ap

=
e−β(εp−µ)

1∓ e−β(εp−µ)
. (4.58)

For the Bose case the coefficients are sometimes referred to as A and B coefficients, and the
enhancement for particles all wanting to be emitted into a state already occupied, provides a
crude explanation of lasers.

Example 4.5:
Consider a box of thermalized gas with f(~p, ~r, t < 0) = e−β(εp−µ). The box is infinitely long
in the y and z directions but is confined in the x direction by two walls, one at x = L and the
other at x = −L. At time t = 0 the walls magically dissolve. Assuming the gas particles do not
interact with one another, solve for f(~p, ~r, t > 0).

Because f is fixed along a trajectory, The initial phase space density is:

f(~p, ~r, 0) = e−β(εp−µ)Θ(L− x)Θ(x+ L).

Using the Liouville theorem, with the particle’s velocity being ~v = ~p/m,

f(~p, ~r, t) = f(~p, ~r − ~vt, 0) = e−β(εp−µ)Θ(L− x+ vxt)Θ(x− vxt+ L).

Writing vx = px/m, and using the fact that Θ(x) = Θ(Cx),

f(~p, ~r, t) = e−β(εp−µ)Θ(px −m(x− L)/t)Θ(m(x+ L)/t− px).

Thus, the distribution at ~r is a thermal one, except for cutting off the tails of the momentum
distribution for px abovem(x+ L)/t and belowm(x− L)/t.

Numerical solutions of the Boltzmann equation tend to fall into two categories. One class of
treatments involves storing f(~p, ~r, t) on a mesh, then explicitly solving for the evolution using
the Boltzmann equation. This can be difficult because a three-dimensional Boltzmann equation
involves storing six-dimensional phase space information. If each dimension is represented by
40 points, one already begins to challenge the typical amount of memory in a desktop worksta-
tion system.

A second approach is to represent the particles as sample particles. For instance, if a nuclear
collision has a few hundred nucleons, one might model the scatterings of 100× more particles.
If the cross section were scaled down by a factor of 100, the collision rates would be the same as
if the sampling ration was 1-to-1. In the limit of a large sample factor, the collisions become local
and correlations are washed out. The simulation then approaches the Boltzmann equation.

4.8 Phase Space Density and Entropy

In the first chapter, we derived the fact that entropy is S =
∑
i−pi ln pi, where pi is the prob-

ability that a state is occupied. If one looks at a single unit of phase space, the probability of
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having the various states n = 0, 1 · · · is determined by the phase space density (at least in
a thermal system). Thus, the entropy in a given cell should be solely determined by the phase
space density, and summing over the cells should give the total entropy. Because the phase space
density of a given cell is fixed in the absence of collisions, it follows that the entropy is also fixed
in the absence of collisions.

If the phase space density is low, there are only two probabilities for a given mode, n = 0 and
n = 1, with probabilities (1 − f) and f respectively. For Fermions, these two probabilities are
all that are allowed even if f approaches unity. The entropy for fermions is thus:

S = −(1− f) ln(1− f)− f ln(f) (for fermions), ∼ f [1− ln(f)] as f → 0. (4.59)

Thus, given f(~p, ~r, t), one can obtain an expression for the entropy that is independent of any
assumption about thermalization, and the total entropy is found by summing over phase space
cells:

Stotal = (2J + 1)
1

(2π~)3

∫
d3p d3r [−(1− f) ln(1− f)− f ln(f)] . (4.60)

To see that the total entropy is fixed in a collisionless system, one can consider Eq. (4.60) with
the replacement that f(~p, ~r, t) = f(~p, ~r − vpt, 0),

S(t) =
(2J + 1)

(2π~)3

∫
d3pd3r {−(1− f(~p, ~r − ~vpt, 0) ln(1− f(~p, ~r − ~vpt, 0)) (4.61)

−f(~p, ~r − ~vpt, 0) ln(f(~p, ~r − ~vpt, 0))}

If one makes the substitution ~r′ ≡ ~r − ~vpt, the r.h.s. immediately becomes S(t = 0).

Example 4.6:
Assuming that the probability of n bosons being in a specific phase space cell is pn ∝ e−nβ(ε−µ),
find an expression for the entropy in terms of the phase space density f .

First calculate the normalized value of pn in terms of x ≡ e−β(ε−µ).

pn =
xn

1 + x+ x2 + x3 · · ·
= xn(1− x).

The entropy is then

S = −
∑
n

pn ln(pn) = −(1−x)
∑
n

xn ln[xn(1−x)] = −(1−x)
∑
n

xn [n ln(x) + ln(1− x)]

Using the fact that
∑
nxn = x∂x

∑
xn,

S = −
x

1− x
ln(x)− ln(1− x).

Finally, to get an expression in terms of f , one inverts the expression, f = x/(1− x) to obtain

x =
f

1 + f
, (1− x) =

1

1 + f
.
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Inserting this into the expression for the entropy,

S = −f ln(f) + (1 + f) ln(1 + f).

Using the Boson result in the example above, and the Fermion result, Eq. (4.60), the entropy for
Bosons/Fermions can be simultaneously expressed,

Stotal = (2J + 1)
1

(2π~)3

∫
d3p d3r [±(1± f) ln(1± f)− f ln(f)] . (4.62)

4.9 Hubble Expansion

A Hubble expansion involves the expansion of a system in a translationally invariant manner.
Translational invariance implies no pressure gradient (relativistically you must be in the refer-
ence frame of the matter) and thus no acceleration. Gravitational effects can still provide accel-
eration, but we leave that for a course in general relativity. If the matter originates from a point
at x = y = z = t = 0, and if the acceleration is zero for every fluid element, the collective
velocity of the matter at later times must be:

~v =
~r

t
. (4.63)

This simply states that an observer moving with a fluid element of velocity ~v will be at position
~r = ~vt if there is no acceleration.

In the absence of collisions, a particle with momentum ~p will slowly traverse matter until it
ultimately reaches matter whose velocity is that of its own, ~vp = ~p/E. Thus, if an observer
moving with the matter measures a particle’s momentum at some time, and if the same particle
does not collide and reaches a second observer, who is also co-moving with the local matter,
the second observer should see a smaller momentum. If a particle of momentum ~p0 and energy
E0 =

√
p2 +m2 at time t0 at the origin, moves without colliding, at time t, its momentum as

measured by a local observer (that moves with the matter) will be:

~p = γ~p0 − γ~vE0 =
1√

1− (r/t)2
~p0 −

~r/t√
1− (r/t)2

E0. (4.64)

Given that the position is

~r = ~vp(t− t0) = (~p0/E0)(t− t0), (4.65)

the second term that is proportional to E0 can also be written as piece proportional to momen-
tum as measured by a co-mover at the later time is

~p =
1√

1− (r/t)2
~p0 −

(t− t0)/t√
1− (r/t)2

~p0 =
~p0t0√
t2 − r2

. (4.66)
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The denominator can be identified with the proper time, i.e., the time a co-moving observer
would have measured because the matter was initially at the origin:

τ ≡
t

√
1− v2

=
√
t2 − r2. (4.67)

Rewriting the expression for the locally-measured momentum,

~p = ~p0

τ0

τ
. (4.68)

Here, ~p0 and ~p are the momenta of the particle as measured by observers who are at the same
position as the particle, but moving with the local matter. Thus, as long as the particle does
not suffer a collision, its locally measured momentum falls inversely with the proper time. If it
never collides, it eventually ends up with matter whose velocity matches that of its own, and the
locally measured momentum approaches zero.

If none of the particles collide between τ0 and τ , the distribution of momenta at any point, as
measured by a co-mover, must be the same as the distribution at τ0 after all the momenta are
scaled by the factor τ0/τ . This is true for both the relativistic and non-relativistic (T << m)
limits.

Example 4.7:
Consider a gas of thermalized photons at temperature T0 = 4000 K at proper time τ0 = 107

years. If the photons do not collide (freeze-out) until the current time, 14 × 109 years, what is
the effective photon temperature?

Because the phase space density does not change with a moving particle,

f(p, τ ) =
e−E0/T0

1− e−E0/T0
.

Furthermore, because p = p0τ0/τ ,

f(p, τ ) =
e−E/(T0τ0/τ)

1− e−E/(T0τ0/τ)
.

Thus, the distribution is identical to a thermal distribution with local temperature,

T = T0

τ0

τ
= 2.85K.

For hydrodynamic expansion (or collisionless expansions) entropy is conserved. If one is at
moving with the fluid the collective velocity is zero and the equation of continuity gives:

∂s

∂τ
= −s∇ · ~v. (4.69)

Because the collective velocity is ~v = ~r/τ , this gives:

∂s

∂τ
= −3

s

τ
. (4.70)
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This gives

s(τ ) = s(τ0)
τ 3

0

τ 3
. (4.71)

For a massless gas, the entropy density is proprotional to T 3,

s(τ )

s(τ0)
=
T 3

T 3
0

=
τ 3

0

τ 3
, (4.72)

and T = T (τ0)τ0/τ , which is the same expression given in the example before for a collisionless
expansion. This equivalence owes itself to Eq. (4.9), which shows that the collisionless system
appears locally equilibrated. Because the system is already locally equilibrated, collisions have
no effect. For that reason, photon-photon collisions would have no effect on the thermal back-
ground radiation spectrum.

For a non-relativistic gas of particles with conserved particle number, the entropy per particle is
determined by the factor ln[(mT )3/2/ρ]. The same equation for continuity used for the entropy
above could be applied to ρ, and would give,

ρ(τ ) = ρ(τ0)
τ 3

0

τ 3
. (4.73)

Fixing the entropy per particle,
T (τ )3/2

ρ(τ )
=
T (τ0)3/2

ρ(τ0)
, (4.74)

or

T (τ ) = T (τ0)
τ 2

0

τ 2
. (4.75)

Thus, a massive gas cools much more quickly than a gas of massless particles. In cosmology,
this difference in cooling inspired the terminology “radiation dominated” for the massless case
vs “matter dominated” for the non-relativistic case. When the universe was approximately a
hundred thousand years old, the temperature of the universe left the radiation-dominated era
and moved into the matter-dominated behavior era. It should be emphasized that the simple
1/τ 2 cooling for the matter (mostly hydrodgen) is not valid due to the heating associated with
galaxy and star formation, but that for the photons, the 1/τ cooling is valid as they decouple
from other matter when atoms formed, as opposed to plasma, because the neutral atoms are
largely transparent to long-wavelength photons.

4.10 Evaporation, Black-Body Emission and the Compound Nucleus

Evaporation plays a crucial role in the cooling of hot stars, hot nuclei, and hot people. For large
systems, where the outer surface is cooler than the inside, accurate estimates of the evaporation
rate involves integrating over the emission probability over the volume of the star, convoluting
with the escape probability. Detailed microscopic approaches are needed for problems of neu-
trino emission from supernovas, or for calculating details of spectra from stars where the outer
gas might absorb specific wave lengths.
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Such emission is often approximated by assuming the particles are thermalized at a distance R,
and that all outgoing particles at this distance escape. The number emitted per unit area per unit
time is:

dN

dA d3p dt
= ~vp · n̂

dNtherm

d3p d3r
Θ(~vp · n̂), (4.76)

where n̂ is the unit normal vector of the surface. For an equilibrated gas,

dNtherm

d3p d3r
= (2J + 1)

f(~p)

(2π~)3
=

(2J + 1)

(2π~)3

e−(εp−µ)/T

1∓ e−(εp−µ)/T
. (4.77)

One can now calculate the emission rate from Eq.s (4.76) and (4.77) from a spherical surface of
radiusR,

Γemm = 4πR2

∫
d3p

(2π~)3
~vp · n̂f(~p)Θ(~vp · n̂) (4.78)

= 4πR2〈cos θΘ(cos θ)〉
∫

d3p

(2π~)3
|~vp| f(~p),

〈cos θΘ(cos θ)〉 =

∫ 1

0
d cos θ cos θ∫ 1

−1
d cos θ

=
1

4
. (4.79)

Here, the average over emission directions yields a factor of 1/4. Thus the emission is

dΓemm

d3p
= 4πR2

|vp|
4

(2J + 1)
f(~p)

(2π~)3
. (4.80)

This rate per area looks like a Boltzmann distribution aside from the factor of |vp|/4, which ac-
counts for faster particles hitting the surface more often. This is known as a Maxwell-Boltzmann
distribution.

Example 4.8:
The surface of a star has a temperature T , which is much less than the mass of an electron m. If
the electrons have chemical potentialµ, what is the ratio of emitted photons to emitted electrons.
(Assume the electrons are non-degenerate.)

Because both particles have two polarizations, the ratio will be determined by the ratio of veloc-
ities and Boltzmann factors:

Ne

Nγ

=

∫
d3p (p/m)e−β(p2/2m−µ)∫
d3p e−βp/(1− e−βp)

=
(mT )28πeβµ

∫
du ue−u

8πmT 3ζ(3)

= eβµ
m

Tζ(3)

For small systems with modest excitation energy, the emitted particle might carry a significant
fraction of the total excitation energy and the assumption of an equilibrated temperature and
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chemical potential becomes unwarranted. For such systems, the temperature before and after
the emission is no longer identical. To address such systems, one can consider two sets of states.
In the first set, the drop has energy between E and E + δE. In the second, the drop has energy
betweenE − εp andE − εp + δE, and a particle in an individual quantum state of momentum
~p runs freely. Again, the rates from one set to the other should be equal if the system is at
equilibrium, with the absorption rate being,

Γabs =
σabs(~p)vp

V
, (4.81)

where V is the volume of the box. Because the emission from a given state in set 1 to a given
state in set 2 equals the rate from the same state in set 2 to the specific state in set 1, the ratio
of the rates for all states emitted from set 1 to set 2 equals the net rate of the inverse process
multiplied by the ratio of states.

Γemm(~p) = Γabs

N(E − εp)
N(E)

(4.82)

=
σabs(~p)vp

V

N(E − εp)
N(E)

, (4.83)

whereN is the number of states of the compound nucleus per unit of excitation energy, usually
called the level density. This is the rate for emitting a particle into a specific single-particle state
in the continuum of volume V . The rate into a range of states in d3p is found by multiplying by
the number of states per d3p, (2J + 1)V/(2π~3), which gives

dΓemm

d3p
= (2J + 1)

σabs(~p)vp

(2π~)3

N(E − εp)
N(E)

. (4.84)

Using the definition of the entropy, ∆S = ln[N(E)/N(E − εp)], one finds

dΓemm

d3p
= (2J + 1)

σabs(~p)vp

(2π~)3
eS(E−εp)−S(E). (4.85)

This type of reasoning, based on the system that absorbs the particle equilibrating the energy,
is known as a Weisskopf argument. If the temperature changes little for such emission, ∆S =
(εp − µ)/T , and one obtains the same expression as before (aside from the degeneracy correc-
tions for f(~p), which would be accounted for if one correctly accounted for the probability that
the large box might already have particles so that the emission would increase the number of
particles in a given momentum state from n to n+ 1).

Example 4.9:
Consider a star of radiusR and uniform temperature T from which spin-1/2 neutrinos are emit-
ted. The rate at which a neutrino is emitted while in the star is γ. Assuming γ is so small that
neutrinos typically travel through the star without ever being captured, use Weisskopf argu-
ments to calculate the rate at which neutrinos are emitted from the star. Also, assume that only
one species of neutrinos exists, (νe).
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Here, the absorption rate for a neutrino from a specific quantum level ~pwithin the large box is

Γabs = γ
4πR3

3V
,

where V is the volume of the box . Weisskopf arguments state that the rate for emission into the
one free quantum state is

Γemm(p) = γ
4πR3

3V
e−Ep/T .

Now emmision into a variety of states within d3p is

dΓemm

d3p
=

(2J + 1)

(2π~)3
γ

4πR3

3
e−Ep/T , (4.86)

= γVstar

(2J + 1)

(2π~)3
e−Ep/T . (4.87)

Here J = 1/2. The emmision rate looks like the equilibrated number of neutrinos in the star
volume, aside from missing the factor 1/(1 + e−Ep/T )), multiplied by the absorption rate γ.

4.11 Diffusion

Diffusion is the continuous limit of a statistical random walk. The prototypical example is an
impurity in a gas, but there are innumerable examples, both within physical processes or any
random process. For instance, the growth and survival of wrapped characters on long para-
graphs can be understood with the diffusion equation.

The diffusion equation is based on the drift equation, a.k.a. Fick’s law,

~j(x) = −D∇ρ. (4.88)

This states that a current j will develop in the presence of a density gradient. If one combines
this expression with the equation of continuity,

∂ρ

∂t
= −∇ ·~j, (4.89)

one finds the diffusion equation
∂ρ(x, t)

∂t
= D∇2ρ. (4.90)

HereD is the diffusion constant.

To see the equivalence with a random walk, we write the equivalent equation for a random walk,

δNi = Γδt {(Ni+1 −Ni) + (Ni−1 −Ni)} , (4.91)
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where Γ is the probability of moving in a specific direction per unit time. Thus, in a small time
step δt, the number of particles leaving a location is 2Γδt. To compare to the diffusion equation,
it is insightful to consider the change in ρ for a small time step δt and to rewrite the diffusion
equation with the derivatives being expressed in terms of changes per ∆x,

δρ(x, t) =
D

∆x2
δt {[ρ(x+ ∆x, t)− ρ(x, t)] + [ρ(x−∆x, t)− ρ(x, t)]} . (4.92)

Comparing the diffusion equation in this form to the analogous equation for a random walk in
Eq. (4.91), then making the statement that ρ is proportional to Ni, allows one to identify the
diffusion constant:

D = Γ(∆x)2. (4.93)

The diffusion constant D can now be identified with microscopic quantities. For instance, if the
collision time is τcoll and the mean free path is λ, the size of the random step is ∆x ∼ λ and the
rate at which one takes some random step in a specific direction is Γ ∼ 1/2τcoll. The diffusion
constant is:

D ∼ λ2/τ = λvtherm. (4.94)

Here, we neglect factors of two, because the collision rate depends on both the velocity of the
diffusing particles, as well as the velocity of the colliding partners, as well as the fraction of mo-
mentum lost per collision. More exact expressions can be evaluated with a detailed microscopic
analysis.

A simple solution to the diffusion equation is a Gaussian,

ρ(x, t) =
1

√
4πDt

exp

{−x2

4Dt

}
. (4.95)

The width of the Gaussian increases as t1/2, beginning at zero. Thus, if you place particles at a
point at x = 0, they would diffuse according to Eq. (4.95).

Example 4.10:
Consider molecules that diffuse in a container whose walls are positioned at x = 0 and x = L.
If the molecules collide with the walls, they stick and disappear from the distribution, and the
density ρ(x) must satisfy the boundary condition that it becomes zero at x = 0 and x = L.
(If, instead, the boundary was perfectly reflective, the boundary condition would require the
current density at the boundary to disappear, or equivalently that∇ρ = 0.) Consider a solution
of the form,

ρ(x, t) = A(t) sin(πx/L).

Using the diffusion equation findA(t).

Inserting this expression into Eq. (4.90),

Ȧ = −D
(
π

L

)2

A,

A(t) = A0 exp

{
−D

(
π

L

)2

t

}
.
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One can also check the solution to see that the rate at which the integrated number falls equals
the drift into the surfaces. Integrating the density,

N(t) =

∫
dx ρ(x, t) = 2A(t)L/π,

Ṅ =
2ȦL

π
= −

2πDA

L

Because the currents into each wall is D∂ρ/∂x, one should get the same result from the drift
equation,

Ṅ = −2D
∂ρ

∂x
= −2A

Dπ

L
.

Indeed, this agrees.

Example 4.11:
Consider the same problem, but with an initially uniform density ρ0. Express ρ(t) as a Fourier
expansion in terms of sin(mπx/L).

First, recall the properties of a Fourier transform in a finite interval, 0 < x < L,

F (x) =
∑

m=1,2,3···

Fm sin(mπx/L),

Fm =
2

L

∫ L

0

dx F (x) sin(mπx/L).

Now, use the following expression for the density,

ρ(x, t) =
∑
m

Am(t) sin(mπx/L).

Before proceeding further, findAm(t = 0),

Am(t = 0) =
2

L

∫ L

0

dx ρ0 sin(mπx/L) (4.96)

=

{
4ρ0/mπ, oddm,
0, evenm.

(4.97)

Each contribution behaves independently, and can be solved exactly as the previous example,
which yields,

Am(t) = Am(t = 0) exp

{
−D

(
mπ

L

)2

t

}
.

Thus, the higher order contributions are damped with rapidly increasing exponential damping
factors. For large times solutions are independent of the initial conditions and approach the form
of the previous example, i.e., only them = 1 term survives.
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For grins, one can use the properties of Fourier transforms to show that ζ(2) = π2/6. If one
integrates, ∫ L

0

dxρ(x, t = 0) = ρ0L,

=
∑

m=1,3···

Am(t = 0)

∫ L

0

dx sin(mπx/L)

=
∑

m=1,3···

8ρ0L

(mπ)2
.

Some algebra shows that ∑
m=1,3···

1

m2
=

3

4

∑
m=1,2,3···

1

m2
=

3

4
ζ(2).

The previous expression thus becomes

ρ0L =
8ρ0L

π2

3

4
ζ(2),

ζ(2) =
π2

6
.

For some problems, one may wish to use the method of images, similar to what is used for some
boundary-value problems in electromagnetism. A simple example considers placing a charge at
x0, where there is an absorbing plate at the x = 0 plane. In the absence of the plate, the density
would evolve as

ρ(x, t) =
1

√
4πDt

e−(x−x0)2/(4Dt). (4.98)

However, this would not satisfy the boundary condition that ρ(x = 0, t) = 0. By considering
a second solution centered at −x0, one can subtract the two solutions to find a solution that
satisfies both the boundary condition at x = 0 and the initial condition, that for x > 0 the
charge is only at one point at t = 0. The overall solution is then

ρ(x, t) =

{
1√

4πDt

(
e−(x−x0)2/(4Dt) − e−(x+x0)2/(4Dt)

)
, x > 0

0, x < 0
(4.99)

When x0 is small, compared to
√
Dt, one can expand the solution in powers of x0, and find

ρ(x, t) ≈ x0

dρ

dx0

∣∣∣∣
x0=0

(4.100)

=
xx0√

4π(Dt)3
e−x

2/(4Dt).

For this limiting solution, one can solve for the remaining fraction of original particles,

N(t) =

∫ ∞
0

dx ρ(x, t) (4.101)

=
x0√
πDt

.

75



PHY 831 4 DYNAMICS OF LIQUIDS AND GASES

Further as a check, one can see that dN/dt = − x0

4
√
πDt3

, which indeed matches the flux into the
wall, j = −D∂xρ at x = 0. The equivalent random walk problem is referred to as the “drunken
sailor on a pier”.

4.12 Langevin Approaches

The Boltzmann equation handles collisions by convoluting two-particle distributions of mo-
menta p1 and p2 to determine the rate they scatter into momenta p3 and p4. Each collision
conserves both energy and momentum. Langevin approaches model the movement of indi-
vidual particles, mimicking scattering by combining random forces and drag forces. Langevin
approaches can model the motion of a high-energy particle moving through a medium requiring
many soft collisions to thermalize, amongst other applications.

The random forces, or more accurately random impulses, have a strength and frequency. In-
creasing either the strength or frequency of these impulses increases the average kinetic motion
and raises the temperature. Drag forces do the opposite, decreasing the kinetic motion and
working to lower the temperature. Here, we derive the relation between these to reach a given
temperature.

Assume that a particle of mass m feels impulses separated by small times ∆t. The impulses
have a strength

〈∆p2
i 〉 = 3σ2, 〈∆pi〉 = 0. (4.102)

The factor of three comes from assuming three dimensions, so that each component has a spread
σ2. Tdrag force is

Fd = −γ~p. (4.103)

Here, wish to show how the drag coefficient along with the parameters σ and ∆t must be ad-
justed if the particles are to equilibrate at a target temperature T . For a given particle, its mo-
mentum at t = 0 arises from the previous momentum kicks ∆pn. For the x component,

px =
∑
n

σne
−γn∆t. (4.104)

The sum covers previous kicks occurring at times n∆t. Because these contributions are linear,
they decay separately according to the decay constant γ. Each kick σn is random, so if one
averages over all the kicks,

〈p2
x〉 =

∑
n

〈σ2
n〉e
−2γn∆t (4.105)

=
σ2

∆t

∑
n

∆te−2γn∆t

≈
σ2

∆t

∫ ∞
0

dt e−2γt,

=
σ2

2γ∆t
.

76



PHY 831 4 DYNAMICS OF LIQUIDS AND GASES

From the equipartition theorem, one should have 〈p2
x〉 = mT at equilibrium, so

T =
σ2

2mγ∆t
. (4.106)

Because adding many small random numbers yields a Gaussian (central limit theorem), the
momentum distribution will also have the correct shape for non-relativistic particles. If the drag
rate γ is determined by physical arguments, one must adjust the strength of the kicks, σ, and
the time step with which they are delivered ∆t to satisfy Eq. (4.106). To maintain a given
temperature, the strength of the random impulses must decrease if one chooses smaller time
steps. As expected, larger σ leads to higher temperatures, and larger damping leads to lower
temperatures. Due to the stochastic nature of the implementation, the time step always enters
the formalism. This is straight-forward to solve numerically. Typically, the random impulses are
chosen with Gaussian distributions, though any short-range even distribution with the variance
σ2 will work.

4.13 Problems

1. A molecule of massm has two internal states, a spin-zero ground state and a spin-1 excited
state which is at energy X above the ground state. Initially, a gas of such molecules is at
temperature Ti before expanding and cooling isentropically to a temperature Tf . Neglect
quantum degeneracy of the momentum states for the following questions.

(a) What is the initial energy per particle? Give answer in terms of m, Ti, X and the
initial density ρi.

(b) Derive an expression for the initial entropy per particle in terms of the same variables.

(c) After insentropically cooling to Tf , find the density ρf . Give answer in terms of ρi,
Ti, Tf andX .

2. Repeat problem #1 above, but assume the molecule has the excitation spectrum of a 3-
dimensional harmonic oscillator, where the energy levels are separated by amounts ~ω =
X , withX << T .

3. A large number ofN diatomic molecules of massm are confined to a region by a harmonic-
oscillator potential,

V (~r) =
1

2
kr2.

The system is at a sufficient temperature T so that the gas can be considered dilute and the
energy levels are practically continuous. The temperature is in the range where rotational
modes are routinely excited, but vibrational modes can be neglected.

(a) What is the energy per particle? Give your answer in terms ofm, T , and k.

(b) Derive an expression for the entropy per particle in terms of the same variables. Begin
with the expression,

S = lnZ + βE,
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where

Z =
zN

N !
,

and z is the partition function of a single molecule.

(c) If the spring constant is adiabatically changed from ki to kf , and if the initial temper-
ature is Ti, find Tf .

Fun facts to know and tell: limN→∞ ln(N !) = N lnN −N .

4. Consider an ideal gas with Cp/Cv = γ going through the Carnot cycle illustrated in Fig.
4.1. The initial volume for N molecules at temperature TH expands from Va to Vb = 2Va
and then to Vc = 2Vb.

(a) In terms ofNTH , find the work done while expanding from a− b.

(b) Again, in terms ofNTH , how much heat was added to the gas while expanding from
a− b.

(c) In terms ofNTH , find the work done while expanding from b− c.

(d) What is the efficiency of the cycle (abcd)?

5. Consider a refrigerator built by an inverse Carnot cycle. What is the efficiency of the re-
frigerator in terms of the temperatures TC and TX?

6. Consider a hydrodynamic slab which has a Gaussian profile along the x direction but is
translationally invariant in the y and z directions. Assume the matter behaves as an ideal
gas of non-relativistic particles. Initially, the matter is at rest and has a profile,

ρ(x, t = 0) = ρ0 exp(−x2/2R2
0),

with an initial uniform temperature T0. Assume that as it expands it maintains a Gaussian
profile with a Gaussian radiusR(t).

(a) Show that entropy conservation requires

T (t) = T0

(
R0

R

)2/3

.

(b) Assuming the velocity has the form v = A(t)x, show that conservation of particle
current gives

A =
Ṙ

R
.

(c) Show that the hydrodynamic expression for acceleration gives

Ȧ+A2 =
R

2/3
0 T0

mR8/3
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Putting these two expressions together show that R(t) can be found by solving and
inverting the integral,

t =

√
m

3T0

∫ R

R0

dx√
1− (R0/x)2/3

,

which, with some work, can be integrated to be

T0t
2

m
= R2 − 4R2

0 + 3R
2/3
0 R4/3.

By solving a cubic equation forR2/3, one can expressR(t) analytically.

7. Consider a gas obeying the Van der Waals equation of state,

P =
ρT

1− ρ/ρs
− aρ2.

(a) First, using Maxwell relations, show that the speed of sound for P (ρ, T ) is given by

mc2
s =

∂P

∂ρ

∣∣∣∣
T

+

(
∂P

∂T

∣∣∣∣
ρ

)2
T

ρ2CV
.

(b) Consider a gas described by the Van der Waals equation of state, which has a density
equal to that of the critical point, ρs/3. What is the range of temperatures for which
the matter has unstable sonic modes? Express your answer in terms of the critical
temperature Tc.

8. Consider an initially thermalized three-dimensional Gaussian distribution for the phase
space density of non-relativistic particles of massm,

f(~p, ~r, t = 0) = f0 exp

{
−
r2

2R2
0

−
p2

2mT0

}
.

Assume the particles move freely for t > 0.

(a) At a given ~r and t > 0, show that f(~p, ~r, t) can be expressed in terms of a locally
thermalized distribution of the form,

f(~p, ~r, t) = C(t)e−r
2/2R2(t) exp

{
−

(~p−m~v(~r, t))2

2mT (~r, t)

}
.

Then, find C(t), R(t), ~v(~r, t) and T (~r, t). In addition to ~r and t, these parameters
should depend on the initial Gaussian sizeR0, the initial temperature T0 and the mass
m.

(b) Find the density as a function of ~r and t, then compare your result for the density and
temperature to that for a hydrodynamic expansion of the same initial distribution as
described in the example given in the lecture notes.
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(c) Using the fact that a hydrodynamic expansion assumes infinitely high collision rate,
and that the Boltzmann solution was for zero collision rate, make profound remarks
about how the hydrodynamic and free-streaming evolutions compare with one an-
other.

(d) Calculate the total entropy as a function of time for the previous problem assuming
f0 is small.

9. Assume that there exists a massive species of neutrinos,mν = 10 eV. Further assume that
it froze out at the same time as the example of the text, when the Hubble time as 107 years
and the temperature was 4000 K. If the Hubble expansion was without acceleration after
that point, and if the current Hubble time is 14× 109 years, find:

(a) the current effective temperature of the massive neutrino.
(b) If the neutrino has two polarizations (just like photons) what would be the relative

population, Nν/Nγ , at freezeout? Assume the chemical potential for the neutrino
is zero (otherwise there would be more neutrinos than anti-neutrinos) and treat the
neutrino non-relativistically,

fν(p) =
e−βε

1 + e−βε
≈ e−β(m+p2/2m).

10. Consider a hot nucleus of radius 5 fm at a temperature of 1 MeV. The chemical potential
for a cold (or warm) nucleus is approximately the binding energy per particle, µ ≈ −7
MeV. Estimate the mean time between emitted neutrons. (Treat the nucleus as if it has
fixed temperature and assume a Boltzmann distribution (not Fermi) for f(~p)).

11. Consider a hot nucleus of radiusR with an electric charge of Z at temperature T . Assum-
ing that protons and neutrons have the same chemical potential, find the ratio of proton
spectra to neutron spectra,

dNprot/d
3pdt

dNneut/d3pdt

as a function of the momentum p. Approximate the two masses as being equal,mn = mp,
and neglect quantum degeneracy. Assume that all incoming nucleons would be captured
and thermalized if they reach the position R. HINT: The emission ratio equals the ratio of
capture cross sections.

12. A drift detector works by moving the electrons ionized by a track through a gas towards
readout plates.

(a) Assuming the mean free path of the electrons is λ = 300 nm, and assuming their ve-
locity is thermal at room temperature (vtherm ≈

√
T/m), estimate the size R (Gaus-

sian radius) that the diffusion cloud imprints onto the plates after drifting for 200 µs.
Use the approximation thatD ≈ λvtherm.

(b) Assume an electric field E is responsible for the drift velocity. If the drift velocity is
approximately a · τ/2, where a is the acceleration and τ = λ/vtherm is the collision
time, find an analytic expression for the Gaussian size R of the cloud if it travels a
distance L. Give R in terms of the temperature T , the electron mass m and charge e,
the electric field E, the mean free path λ and L.
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13. A cloud of radioactive mosquitos is being blown by the wind parallel to a high-voltage
mosquito-zapping plate. At at time t = 0, the cloud is at the first edge of the plate (x = 0).
The probability they start out at a distance y from the plate is:

ρ(y, t = 0) = A0ye
−y2/(2R2

0)

The speed of the breeze is vx, and the length of the plate is L. The mosquito’s motion in
the y direction can be considered a diffusion process with diffusion constantD.

(a) What is the distribution ρ(y, t)? Assume that the form for ρ(t) is the same as for ρ0

only withA andR becoming functions of t. Solve only for t < L/vx.

(b) What fraction of mosquitos survive?

14. For an expanding system, the Diffusion equation is modified by adding an extra term pro-
portional to∇ · ~v,

∂ρ

∂τ
+ ρ(∇ · ~v) = D∇2ρ.

The second term accounts for the fact that the density would fall due to the fact that the
matter is expanding, even if the the particles were not diffusing. For a Hubble expansion,
~v = ~r/τ , and the ∇ · ~v = 3/τ (would be 2/τ or 1/τ in 2-D or 1-D). Thus in a Hubble
expansion, the diffusion equation becomes

∂ρ

∂t
+

3

τ
ρ = D∇2ρ.

Instead of the position ~r, one can use the variable

~η ≡
~r

τ
.

The advantage of using η is that because the velocity gradient is 1/τ , the velocity differ-
ence between two points separated by dr = τdη is dv = dη. Thus if two particles move
with the velocity of the local matter, their separation η1 − η2 will remain fixed. Next, one
can replace the density ρ = dN/d3r with

ρη ≡
dN

d3η
= τ 3ρ.

Here, we have been a rather sloppy with relativistic effects, but for |η| much smaller than
the speed of light, they can be ignored. One can now rewrite the diffusion equation for ρη,

∂ρη

∂τ
= D∇2ρη.

This looks like the simple diffusion equation without expansion, however because the den-
sity is changing D is no longer a constant which invalidates using the simple Gaussian
solutions discussed in the chapter. For an ultrarelativistic gas, with perturbative interac-
tions, the scattering cross sections are roughly proportional to 1/T 2, and the density falls as
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1/T 3, which after considering the fact that the temperature then falls as 1/τ , the diffusion
constant would roughly rise linearly with time,

D(τ ) = D0

τ

τ0

.

This time dependence would be different if the particles had fixed cross sections, or if the
gas was not ultra-relativistic. However, we will assume this form for the questions below.

(a) Transform the three-dimensional diffusion equation,

∂ρη

∂τ
= D(τ )∇2ρη

into an equation where all derivatives w.r.t. r are replaced with derivatives w.r.t. η.

(b) Rewrite the expression so that all mention of τ is replaced by s ≡ ln(τ/τ0).

(c) If a particle is at ~η = 0 at τ0, find ρη(η, s).

15. Consider Fick’s law for the number density and the number current,~j = −D∇ρ.

(a) Rewrite Fick’s law in terms of the gradient of the chemical potential, showing that D
is replaced byDχwhere χ = ∂ρ/∂µ.

(b) Replacing the gradient of the chemical potential with the gradient of electric potential,
assuming the particles have charge e, find an expression for the electric current,~je =

e~j, in terms of a gradient of the electric potential energy eΦ.

(c) Express the electric conductivity, σ, in terms ofD, χ and e.

16. Consider Eq. (4.106) for a one-dimensional system:

(a) In terms of γ, T , ∆t and m, estimate the amount of time required for the variance of
the sum of random impulses, ∆p, in one direction to reachmT , the thermal variance.

(b) Calculate 〈v(t = 0)v(t)〉, the velocity-velocity correlation in the limit ∆t→ 0.

(c) Calculate the r.m.s. distance traveled by a particle in time t in the large-time limit,
γt >> 1.
Hint: Use the fact that for a specific particle that had a velocity v0, the position is
x(t) =

∫ t
0
dt′ v(t′), where v(t) is the contribution from all the previous impulses,

v(t) = v0e
−γt +

∑
n

∆vne
−γ(t−tn),

〈∆vm∆vn〉 =
σ2

m2
δmn.

(d) For large times, γt >> 1, estimate the diffusion constant by comparing 〈x2(t)〉 to
the result for the diffusion equation.
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5 Lattices and Spins

Oh, what tangled webs we weave when first we practice to believe - L.J. Peter

5.1 Statistical Mechanics of Phonons

Phonons are sound waves that move through a crystal or liquid, with the name phonon coming
from the Greek phone for sound, and made to sound like photon, with which phonons have much
in common. Phonons play a critical role in determining the specific heat and heat diffusion
properties of solids. Additionally, it is the exchange of phonons that provides the attractive
interaction necessary for superconductivity.

Sonic excitations in solids have discrete eigen-modes, just as they do for air in organ pipes. Using
k = (kx, ky, kz) to denote the wave number, density waves in a rectangular solid behave as

δρ(r, t) = A sin(k · r) cos(ωt), (5.1)

kx = nx
π

Lx
, ky = ny

π

Ly
, kz = nz

π

Lz
, ω = csk,

with cs being the speed of sound. As quantum excitations, the momentum and energy of the
excitations are determined by the simple relations,

p = ~k, ε = ~ω, (5.2)

which looks exactly the same as that for photons. The difference being that for phonons, ω =
csk, with cs being the speed of sound rather than the speed of light. In the macroscopic limit,
we state the density of such modes as:

dN =
3V d3k

(2π)3
=

3V d3p

(2π~)3
, (5.3)

where the factor 3 on the r.h.s. arises because there are 2 transverse modes and one longitudinal
mode for any wave number. This is exactly the same as the expression for free particles with
J = 1. Here, it is assumed that the transverse and longitudinal modes have the same wave
velocities, but it is a simple extension to assign different speeds for transverse and longitudinal
phonons.

A second difference between phonons and photons is that wavelengths of sonic excitations can-
not be arbitrarily short, and are cut off at the scale of the lattice spacing. To determine the wave-
length and frequency of the cutoff, the usual argument is based on the number of modes of the
sonic excitations as compared to the number of vibrational modes in the individual atoms in the
lattice. If one treats the lattice as a collection of coupled three-dimensional harmonic oscillators,
each site contributes three modes if the coupling is ignored. Once the coupling between sites is
introduced, the new eigen-modes become linear combinations of the previous 3N modes. The
cutoff in wave number can be determined by equating the number of modes,

3N =
3V

(2π)3

∫ kD

0

d3k =
3V

(2π)3

4π

3
k3
D, (5.4)
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which gives the cutoff wave number as

kD =

(
6π2N

V

)1/3

. (5.5)

The subscript D refers to Debye, who first considered the cutoff in 1912. It is more common to
refer to the frequency of the cutoff rather than the wave number. The Debye frequency is

ωD = kDcs = cs

(
6π2N

V

)1/3

. (5.6)

In the real world, transverse and longitudinal modes have different speeds of sound. One can
make corrections for this and assign different values of ωD and kD for longitudinal and trans-
verse modes, but as the physics of the high-frequency modes is described by the simple cutoff
prescription at the ∼ 10% level, we will simply assume that both modes have the same cutoff
in frequency.

Figure 5.1: The specific heat from phonons rises as
T 3 at low temperature, then approaches a constant
of 3N at large T , where the thermal properties revert
to those of the harmonic oscillator states upon which
the sonic modes are built.

The occupancy of a given mode is given by

f(k) =
e−~csk/T

1− e−~csk/T
, (5.7)

which is the expression for Bose modes. The modes are bosonic because they are built on har-
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monic oscillator states which allow multiple excitations. The energy and specific heat are:

E =
3V

(2π~)3

∫
p<~ωD/c

d3p csp
e−βpcs

1− e−βpcs
, (5.8)

CV =
dE

dT

∣∣∣∣
V

=
3V

(2π~)3T 2

∫
p<~ωD/c

d3p (csp)2
e−βpcs

(1− e−βpcs)2

=
12πV T 3

(2π~cs)3

∫ xD=β~ωD

0

dx x4
e−x

(1− e−x)2

=
V ω3

D

2π2c3
s

D(xD)

= 3ND(xD),

D(xD) ≡
3

x3
D

∫ xD

0

dx x4
e−x

(1− e−x)2
. (5.9)

The last step used the definition of the Debye frequency, Eq. (5.6). All the temperature depen-
dence in carried by xD ≡ β~ωD.

At high temperatures, the Debye function D(x) is found by setting xD to zero which is accom-
plished by approximating e−x ∼ 1− x in Eq. (5.9),

D(xD → 0) ≈ 1 (5.10)
CV (T →∞) ≈ 3N. (5.11)

This is the expected result for N three-dimensional harmonic oscillators. We could have pre-
dicted this result by simply knowing that at high temperature the coupling between oscillators
should become irrelevant and the specific heat should be determined by the number of degrees
of freedom.

To study the behavior of CV at low temperature we first integrate by parts, using the fact that
e−x/(1− e−x)2 = −(d/dx)e−x/(1− e−x). This yields,

D(xD) = −3xD
e−xD

(1− e−xD)
+

12

x3
D

∫ xD

0

dx x3
e−x

1− e−x
. (5.12)

At low temperatures, xD →∞, which allows one to ignore the first term while setting the limit
on the second term to∞.

D(xD →∞) =
72

x3
D

ζ(4), (5.13)

CV (T → 0) = 216Nζ(4)

(
T

~ωD

)3

= 36
V T 3

π2(~cs)3
ζ(4),

where ζ(4) = π4/90 is the Riemann-Zeta function. Aside from the different spin factor, this is
the identical result one would obtain for photons if cs were replaced by the speed of light. FYI:

85



PHY 831 5 LATTICES AND SPINS

the second term in Eq. (5.12) is sometimes expressed in terms of the functionsDn(x), whereDn

with the subscript n is the more general definition of a Debye function,

Dn(x) ≡
1

x3

∫ x

0

dt
tne−t

1− e−t
. (5.14)

5.2 Feromagnetism and the Ising Model in the Mean Field Approximation

The term “ferromagnetism” refers to the spontaneous alignment of magnetic spins along a par-
ticular direction. Typically, this happens at low temperature and abates when a material is
heated. The term “anti-ferromagnetism” describes a system where spins are highly ordered,
but in such a way that spins often point in different directions and the net magnetic field is zero.
There is actually at term “ferrimagnetism” describing a state where the ordering of spins has a
structure where some reduce the magnetization, but do not cancel the magnetization, while still
having spontaneous magnetization. For other materials, the terms “paramagnetic” and “dia-
magnetic” describe whether the induced magnetization enhances or opposes an external mag-
netic field. Only a few elements are ferromagnetic in their pure form, such as iron, nickel and
cobalt.

In the next section we consider the Ising model, which is based on a simple Hamiltonian for
spins on a lattice,

H = −J
∑
n.n.

σiσj − µB
∑
i

σi. (5.15)

Here, the notation on the sum, n.n., refers to the fact that one sums over all pairs of nearest
neighbors, and the values of the spins σi are limited to±1 (not±1/2). One can include a higher
number of spins, but those models go by a different name, Pott’s model. In a two-dimensional
Pott’s model the spins can point in a finite number n of directions which are separated by ∆θ =
2π/n, and the interactions between neighboring spins behave as −J cos(θi − θj). In the limit
of n → ∞, it is called the XY model, and for n = 2 it becomes the Ising model. Despite the
apparent simplicity of the Ising model interaction, the solution is remarkably rich, and can only
be solved numerically unless one is in one dimension.

In this section, we consider the mean-field limit of the Ising model. In that limit, the spins are
treated independently, with neighboring spins being treated as if they possessed the average
spin, unrelated to the spin of the immediate neighbor. Thus, the interaction for a single spin is

Hi = −qJ〈σ〉σi − µBσi, (5.16)

where q is a phenomenological parameter, roughly representing the number of nearest neigh-
bors, and 〈σ〉 is the average spin. First, we consider the case with zero external fieldB. One can
then calculate the average of σ,

〈σi〉 =
eβqJ〈σ〉 − e−βqJ〈σ〉

eβqJ〈σ〉 + e−βqJ〈σ〉
= tanh(βqJ〈σ〉). (5.17)

Because the average of a particular spin equals the average of all spins, 〈σi〉 = 〈σ〉, and one has
a simple equation to solve for 〈σ〉,

〈σ〉 = tanh(βqJ〈σ〉). (5.18)
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The solution can be seen graphically in Fig. 5.2 by plotting the l.h.s. and the r.h.s. of Eq. (5.18) as a
function of 〈σ〉 and finding where the two graphs intersect. The 〈σ〉 = 0 solution always exists.
A second, non-trivial, solution exists only for βqJ > 1. The solution can be found graphically
(see Fig. 5.2) by finding the intersection of the two curves. If βqJ < 1 the tanh function starts
out with a smaller slope, then bends over and the two functions never intersect, whereas for
βqJ > 1 the tanh function starts out above the linear function, and, because it bends over
and ultimately becomes horizontal, intersects the linear function at some point. This criteria
of having the second solution provides the critical temperature for the transition, βqJ = 1 or
Tc = qJ . Some times this temperature is referred to as the Curie temperature. More neighbors
or a higher coupling increases Tc. For T < Tc, the 〈σ〉 = 0 solution also satisfies Eq. (5.18) but
yields a higher free energy. Fig. 5.3 shows the mean magnetization as a function of temperature
from solving Eq. (5.18).

Figure 5.2: Graphical solution to Eq. (5.18). For
βqJ = 0.75, there is no solution aside from 〈σ〉 =
0, whereas for βqJ = 1.25, there is an additional
solution as marked where the lines intersect. The so-
lution exists for βqJ > 1, or for T < Tc = qJ .

Figure 5.3: The mean magnetization as a func-
tion of temperature in the mean field approxima-
tion.Spontaneous magnetization ensues for T <
Tc = qJ for zero field, whereas for finite the tran-
sition is smoothed over and some magnetization en-
sues for T > Tc.

Example 5.1:
Find an expression for 〈σ〉 in the limit of small deviation δT = Tc − T .
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In this limit 〈σ〉will be small, so the tanh function in Eq. (5.18) can be expanded for small σ,

〈σ〉 = βqJ〈σ〉 −
1

3
(βqJ〈σ〉)3 + · · · .

Solving for 〈σ〉,

〈σ〉 ≈

√
3(βqJ − 1)

(βqJ)3
≈

√
3(Tc − T )

Tc
. (5.19)

Figure 5.4: Graphical solution to Eq. (5.21), magneti-
zation with external field. The magnetic field raises
the tanh curves from the origin so that solutions ex-
ist for any temperature, not just T < Tc.

One can add an external magnetic field to the mean field equation. This adds a term µBσ to the
energy for each spin, which leads to the following expression for the average spin,

〈σi〉 =
eβ(qJ〈σ〉+µB) − e−β(qJ〈σ〉+µB)

eβ(qJ〈σ〉+µB) + e−β(qJ〈σ〉+µB)
, (5.20)

or
〈σ〉 = tanhβ (qJ〈σ〉+ µB) . (5.21)

Unlike the solution with B = 0, the 〈σ〉 6= 0 solution exists for all temperatures. The disconti-
nuity of the slope in the plot of 〈σ〉 vs. T is then smoothed out as shown in Fig. 5.3.

The results described above can alternatively be found by minimizing the free-energy as a func-
tion of 〈σ〉. This alternative method is a bit longer, but has the advantage of showing how the
〈σ〉 = 0 solution is less favorable. Because the free energy is given by F = E − TS, we first
find an expression for the entropy in terms of 〈σ〉, the temperature, the field and the coupling
qJ . Assuming the probability that a spin in the spin-up state is p,

S

N
= −

1

N

∑
i

pi ln pi = −p ln p− (1− p) ln(1− p). (5.22)

To express this in terms of 〈σ〉, one inverts the expression

〈σ〉 = p− (1− p) = 2p− 1, (5.23)
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to find

p =
1 + 〈σ〉

2
, (1− p) =

1− 〈σ〉
2

. (5.24)

The entropy is then

S

N
= −

1 + 〈σ〉
2

ln

(
1 + 〈σ〉

2

)
−

1− 〈σ〉
2

ln

(
1− 〈σ〉

2

)
(5.25)

The energy per spin is
E

N
= −

qJ

2
〈σ〉2 − µB〈σ〉, (5.26)

where the factor of 1/2 ensures that the interaction between neighboring spins is not double
counted. Now, one must simply minimize F = E − TS with respect to 〈σ〉,

∂

∂〈σ〉
F

N
= 0 (5.27)

=
∂

∂〈σ〉

{
−
qJ

2
〈σ〉2 − µB〈σ〉+ T

1 + 〈σ〉
2

ln

(
1 + 〈σ〉

2

)
+ T

1− 〈σ〉
2

ln

(
1− 〈σ〉

2

)}
0 = −qJ〈σ〉 − µB +

T

2
ln

(
1 + 〈σ〉
1− 〈σ〉

)
.

Rearranging the terms so that the logarithm is isolated on one side, then taking the exponential
of both sides,

e2βqJ〈σ〉+2βµB =
1 + 〈σ〉
1− 〈σ〉

, (5.28)

〈σ〉 =
e2βqJ〈σ〉+2βµB − 1

e2βqJ〈σ〉+2βµB + 1
= tanh(βqJ〈σ〉+ βµB).

This is precisely the earlier result, Eq. (5.21)

5.3 One-Dimensional Ising Model

The Ising model can be written in any number of dimensions, but the one-dimensional situation
is of particular interest because it can be solved analytically. The method for solving the model
is of interest in its own right, but it also represents a striking lesson of the folly of applying the
mean field approximation in certain situations.

It is intuitively clear that a one-dimensional system cannot undergo spontaneous magnetization.
For any temperature above zero, there is always the possibility that any two consecutive spins
might not point in the same direction. The penalty for a long chain to break into two equal
regions, one spin-up the other spin-down, is thus finite. The same is not true for a two- or
three-dimensional system. In those cases, one must flip spins along a boundary whose size
grows to infinity as the size of the system goes to infinity. This rather manifest fact is sometimes
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stated as a principle: “There is no long-range order in one-dimension” (unless there is a long-
range interaction). This principal is manifestly violated in the mean-field approximation which
results in spontaneous magnetization, independent of the dimensionality. This underscores the
importance of understanding the role of correlations, rather than averaged behavior, in driving
the behavior of the system.

Even though the average magnetization for theB = 0 case is trivially zero in a one-dimensional
system, the B 6= 0 behavior seems non-trivial at first glance. However, it can be solved analyti-
cally. To see this we consider the partition function,

Z =
∑

σ1···σn

expβ {J(~σ1 · ~σ2 + ~σ2 · ~σ3 + · · · ~σn · ~σ1) + µB(σ1 + σ2 · · ·+ σn)} , (5.29)

where each spin is coupled through an energy−J~σi ·~σi+1 to the adjacent spin, and the last spin
is coupled back to the first spin, as if the lattice is bent into a ring. The energy can be expressed
as a sum over the spin values,

H =
∑
i

−Jσiσi+1 −
1

2
µB(σi + σi+1), (5.30)

and the partition function can then be written as a product of matrix elements,

Z =
∑

σ1···σn

〈σ1|P|σ2〉〈σ2|P|σ3〉 · · · 〈σn|P|σ1〉, (5.31)

Pi,i+1 = expβ

{
Jσiσi+1 +

1

2
µB(σi + σi+1)

}
,

=

(
eβ(J+µB) e−βJ

e−βJ eβ(J−µB)

)
.

Here, P is known as the transfer matrix, where the states with σi = ±1 are represented by a
two-component vector with elements either up or down respectively. The partition function can
then be expressed as

Z = Tr P n, (5.32)

which due to the cyclic property of the trace can also be written as

Z = Tr (UPU †)n, (5.33)

whereU is a unitary transformation (U † = U−1). We will use the transformation that diagonal-
izes P , UPU † = Pλ, so

Z = Tr (Pλ)
n. (5.34)

The elements of Pλ are the eigenvalues of P ,

Pλ =

(
λ+ 0
0 λ−

)
, (5.35)

λ± = eβJ cosh(βµB)±
√
e2βJ sinh2(βµB) + e−2βJ .
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One can now write the partition function as

Z = Tr Pnλ = Tr

(
(λ+)n 0

0 (λ−)n

)
= (λ+)n + (λ−)n. (5.36)

As n→∞, the second term becomes unimportant as can be seen from expanding lnZ,

lnZ = ln

{
(λ+)n

[
1 +

(
λ−

λ+

)n]}
= n ln(λ+) + ln

[
1 +

(
λ−

λ+

)n]
, (5.37)

and the second term vanishes because λ− < λ+. This gives the final result for the partition
function,

lnZ = n ln(λ), λ = eβJ cosh(βµB) +

√
e2βJ sinh2(βµB) + e−2βJ . (5.38)

Example 5.2:
In terms of J, µB and T , find the average magnetization (per spin) for the 1-d Ising model.

Because the magnetic field enters the Hamiltonian as−µ~B · ~σ, the average spin is

〈σ〉 =
1

n

∂ lnZ

∂(βµB)
.

This gives,

〈σ〉 =

sinh(βµB) + cosh(βµB) sinh(βµB)√
sinh2(βµB)+e−4βJ

cosh(βµB) +
√

sinh2(βµB) + e−4βJ

=
sinh(βµB)√

sinh2(βµB) + e−4βJ

.

Although the exact analytic solution only exists for one-dimension, the technique of applying a
transfer matrix can be applied to more dimensions. For a finite two-dimensional lattice of size
Lx×Ly, one can treat the configuration of each row as a state, with 2Lx possible values. One can
then construct the (2Lx × 2Lx) transfer matrix between neighboring columns. This is discussed
in Chapter 15 of Huang.

5.4 Lattice Gas, Binary Alloys, Percolation...

Aside from the multitude of theoretical treatments of spins on lattices, lattices are also used
to model liquid-gas phase transitions, percolation and fragmentation. Mainly to provide an
introduction to the vocabulary, we present a list of several such models here. The first model
we describe is the lattice gas. Here, a lattice of sites are assigned either zero (no particle) or
1 (occupied) with a set probability. The configuration is weighted according to the probability

91



PHY 831 5 LATTICES AND SPINS

exp{−Nnnε0/T}, whereNnn is the number of nearest neighbor sites. Effectively, this models a
gas with a short-range attractive attraction, represented by the positive weight (assuming ε0 <
0). Because the occupancy is never greater than unity, it also mimics a repulsive interaction at
short distances. This can be used to model the shapes of drops, which can become very irregular
near the critical point.

Binary alloys are more physically represented by lattices. Each site is assigned a specific species.
The lattice is first constructed according to the physical structure of the modeled system, e.g., it
might be body-centered cubic, before Na + Nb = N atoms are assigned to the N lattice sites.
The entire configuration is weighted according to e−βH where

H = εaaNaa + εbbNbb + εabNab, (5.39)

where Nij are the number of neighboring combinations where one species is i and the other
is j. For the case of two equally populated species on a BCC lattice, the lowest energy state is
chemically divided into alternate planes. Above some critical temperature, the long-range order
disappears. Like the lattice gas, the binary model and the Ising model all involve assigning one
of two numbers (0 or 1 for a lattice gas, ’1’ or ’2’ for a binary alloy, and ’-1’ or ’1’ for the Ising
model) to lattice sites, then adding a weight which depends only nearest neighbor occupancies.
Thus, all three approaches can at times be mapped onto one another.

One numerical strategy for treating a lattice gas or a binary alloy is referred to as Markov-Chain
Monte Carlo (MCMC). One begins with some configuration, which could be arbitrary, then con-
siders small changes, e.g. two random sites in the binary alloy switch a with b species. The
two configurations, which we will call C1 and C2, have different energies separated by ∆E. One
generates a chain of configurations by following the following algorithm, assuming you already
have configuration Ci

1. Choose a configurationCi+1 by making a small change toCi, and calculate ∆E = Ei+1−
Ei.

2. If ∆E < 0, the configuration is more favorable. You add the new configuration to your
list.

3. If ∆E > 0, you throw a random number r from a uniform distribution, 0 < r < 1. If
r < e−β|∆E|, add the new configuration to your list.

4. If r > e−β|∆E|, keep the old configuration, i.e. Ci+1 = Ci.

As long as the chance of choosing Ci+1 given one is in Ci is identical to the chance of choosing
Ci given one is inCi+1, the system obeys time reversal and is effectively ergodic. If one imagines
a very large ensemble of chains where the probability of being in a configuration i is pi ≈ e−βEi ,
the probability will stay that way if the rate at which one goes from i to j is the same as the rate
one goes from j to i. Given the rate of choosing j given i is the same as the rate of choosing
i given j the probability ratio pi/pj will only be maintained if the rate of acceptances is pro-
portional to e−β∆E . As long as the chain eventually reaches all configurations, a sampling over
time of a given chain should represent a proper statistical sampling. This particular algorithm
for the chain is known as Metropolis-Hastings. In some cases, there are barriers, e.g. nucleation
barriers for the lattice gas, which require a long chain before it can reach certain configurations.
It can also take a long time to build up long-range correlations, such as those that exist near a
phase transition. For such problems much more sophisticated strategies need to be developed.
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Another class of calculations are called “percolation models”. These models usually address the
question of how long a given chain might extend across a lattice, given that some of the links
might be broken. Percolation models can be divided into bond percolation or site percolation.
In bond percolation, a lattice is constructed with potential bonds between all nearest neighbors.
Only a fraction p of bonds are unbroken, with the choice of which bonds to break chosen ran-
domly. For a two-dimensional (L×L) or three-dimensional (L×L×L) lattice, one can ask the
question of whether an unbroken chain can be found that extends completely across the lattice.
As L → ∞, an infinite chain will exist if and only if p > pc. The critical value pc depends
on dimensionality and the type of lattice, e.g., cubic or BCC, and whether one is doing bond
percolation of site percolation. For site percolation, the sites are populated with probability p,
and bonds are assumed to exist if neighboring sites are filled. For bond percolation of a simple
three-dimensional cubic lattice, pc ≈ 0.2488.
(See http://mathworld.wolfram.com/PercolationThreshold.html).

Percolation is used to study electric properties and fragmentation. Percolation models have
been applied to fragmentation of nuclei from nuclear collisions. The same approaches have
been compared to experiments where a glass is dropped and shattered and analyzed for the
probability of a given shard having a specific mass.

The method of linked lists provide a good computational strategy for percolation models. One
defines an object for each site, that stores a pointer to the cluster to which it belongs, and a
pointer to the next site in the cluster. One also defines an object for each cluster, with each
cluster representing a linked list, i.e. the cluster need only be a pointer to the first site in the list.
One begins with all the bonds broken and each site is in its own list. As bonds are mended, one
checks to see whether the sites are in the same cluster, and if not, the clusters are merged.

5.5 Problems

1. The speed of sound in copper is 3400 m/s, and the number density is ρCu = 8.34 × 1028

m−3.

(a) Assuming there are two free electrons per atom, find an expression forCV /Na (where
Na is the number of atoms) from the free electrons in copper by assuming a free gas
of electrons. Use the expression from chapter 2 for a low-T Fermi gas,

δE = T 2
π2

6
D(ε),

where D(ε) is the density of single particle electron states at the Fermi surface. Give
answer in terms of T and the Fermi energy εF .

(b) In terms of εF and ~ωD, find an expression for the temperature at which the specific
heat from electronic excitations equals that from phonons. Use the low T expression
for the specific heat of phonons.

(c) What is ~ωD in eV? in K?

(d) What is εF in eV? in K?

(e) What is the numerical value for the answer in (b) in K?
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2. Consider the mean-field solution to the Ising model of Eq. (5.18).

(a) For small temperatures, show that the variation δ〈σ〉 = 1− 〈σ〉 is:

δ〈σ〉 ≈ 2e−2qJ/T .

(b) Consider a function of the form, y(T ) = e−1/T . Find dy/dT , d2y/dT 2, and dny/dT n

evaluated at T = 0+. What does this tell you about doing a Taylor expansion of y(T )
about T = 0+?

3. Show that in the mean field approximation of the Ising model the susceptibility,

χ ≡
d〈σ〉
dB

,

becomes

χ =
(1− 〈σ〉2)µ

T − Tc + 〈σ〉2Tc
.

4. The total energy for the Ising model in the mean field approximation from summing over
all the sites in Eq. (5.16) is

H = −
N

2
qJ〈σ〉2 −NµB〈σ〉,

where N is the number of sites, and the factor of 1/2 is a correction for double counting.
In terms of T, Tc, µB and 〈σ〉, find an expression for

Cv =
1

N

dE

dT
.

5. Consider the one-dimensional Ising model. For the following, give analytic answers in
terms of T , µB and J .

(a) What are the highB and lowB limits for 〈σ〉?
(b) What are the high T and low T limits for 〈σ〉?
(c) Find an exact expression for the specific heat (per spin) in terms of T , µB and J .

(d) What are the highB and lowB = 0 limits for the specific heat?

(e) What are the high T and low T limits for the specific heat?

94



PHY 831 5 LATTICES AND SPINS

6. Consider two-dimensional bond percolation of a large L × L simple square lattice. First
consider the red lattice, where we will remove a percentage p of the red bonds. Next, we
will remove all blue bonds that intersect a surviving red bond. Thus, in the limit of a large
lattice, the fraction of blue bonds broken will be (1− p).

(a) List which combinations of the following are possible.

a) A connected string of blue bonds extends all the way from the bottom blue row
to the top of the lattice.

b) There is no connected string of blue bonds that extends all the way from the bot-
tom to the top.

c) A connected string of red bonds extends all the way from the left side to the right
side of the red lattice.

d) There is no connected string of red bonds that extends all the way from the left
side to the right side of the red lattice.

(b) What is pc for a simple square lattice in bond percolation?

7. Consider a one-dimensional bond percolation model of an infinitely long string, where the
probability of any set of neighbors being connected is p.

(a) In terms of p, find the probability that a fragment will have sizeA.

(b) What is the average size of a fragment?
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6 Landau Field Theory

Nothing is real and nothing to get hung about - J. Lennon, P. McCartney

6.1 What are fields?

Field theory represents a means by which the state of a system is expressed in terms of a quantity
φ which is a function of the position ~x. The quantity φ represents a measure of some quantity
averaged over a small volume δV . One example of such a quantity is the average magnetization
per unity volume, ~m(~x), while another is the number density ρ(~x). In each case, when viewed
microscopically, the magnetization density and the number density are not smooth quantities,
but are carried by point-like objects. Thus, field theories are only applicable when looking at
averages or correlations on scales larger than the microscopic scale of the matter. As will be seen
further ahead, correlation length scales tend to go to infinity near a critical point, a region where
field theories are especially applicable.

Finite-temperature field theories are usually expressed in terms of the free-energy density, f(~x),

F ≡
∫
d3x f(φ,∇φ), (6.1)

f =
κ

2
(∇φ)2 + V(φ).

The second statement, that derivatives appear only quadratically, is certainly an ansatz, but as
we will see below, the approximation is motivated from physical arguments. The choice of the
symbol F for the free energy should not suggest that one is always interested in the Helmholtz
free energy, as for some applications it might represent the Gibb’s free energy or the entropy. If
the parameter φ changes slowly compared to the time required to come to thermal equilibrium
(constant temperature), the use of the Helmholtz free energy is the appropriate choice.

The gradient term is warranted whenever there is an attractive short-range interaction. As an
example, one can look at the two-dimensionalX−Y model, where spins on a lattice are denoted
by an angle θ, with the following interaction between nearest neighbors,

Vij = V0[1− cos(θi − θj)]. (6.2)

For perfectly aligned spins Vij = 0, whereas Vij = 2V0 when the spins are anti-aligned. For
small differences in the angle this can be approximated as:

V =
V0

2

∑
ix,iy

(θix − θix−1)2 + (θiy − θiy−1)2 (6.3)

=
V0

2

∑
ix,iy

[
(θix − θix−1)2 + (θiy − θiy−1)2

]
(∆L)2

(∆L)2

=
V0

2

∫
dx dy (∇θ)2,

where ∆L is the lattice spacing. Thus, in this example, it is easy to identify κ in Eq. (6.1) with
the microscopic quantity V0. Because the free energy is F = E − TS, terms that contribute to
the energy density carry through to the free energy density.
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A second example is that of a liquid, or gas, where φ refers to the density ρ(~x). In that case the
attractive interaction is mainly the two-particle potential v(~r),

V =
1

2

∫
d3x d3x′ 〈ρ(~x)ρ(~x′)〉v(~x− ~x′). (6.4)

For a field theory, we are interested in an average density at a given point ρ̄(~x). In terms of the
averages, the two-body potential energy is

V =
1

2

∫
d3x d3x′ρ̄(~x)ρ̄(~x′)C(~x, ~x′)v(~x− ~x′), (6.5)

C(~x, ~x′) ≡
〈ρ(~x)ρ(~x′)〉
ρ̄(~x)ρ̄(~x′)

.

Here, C(~r) is the correlation (unity if uncorrelated) for two particles to be separate by ~r. In the
low density limit (particles interacting only two-at-a-time) the correlation is approximately

C(~x, ~x′) ≈ e−v(~r)/T , ~r ≡ ~x− ~x′. (6.6)

Next, one can make a gradient expansion for ρ̄,

ρ̄(~x′) ≈ ρ̄(~x) + (x′i − xi)∂iρ̄(~x) +
1

2

∑
i,j

(x′i − xi)(x
′
j − xj)∂i∂jρ̄(~x), (6.7)

and inserting into Eq. (6.5),

V =
1

2

∫
d3x d3r ρ̄(~x)ρ̄(~x)e−v(~r)/Tv(~r) +

1

2

∫
d3x d3r ρ̄(~x)

∂

∂xi
ρ̄(~x)rie

−v(~r)/Tv(~r)

+
1

4

∫
d3x d3r ρ̄(~x)

∂2

∂xi∂xj
ρ̄(~x) rirje

−v(~r)/Tv(~r). (6.8)

Because V (~r) is an even function of ~r, the odd terms in the expansion can be discarded leaving

V =

∫
d3x

{
Vlocal(ρ̄(~x))−

κ

2
ρ̄(~x)∇2ρ̄(~x)

}
(6.9)

κ = −
1

6

∫
d3r r2e−v(r)/Tv(r),

Vlocal(ρ̄) =
ρ̄2

2

∫
d3r e−v(r)/Tv(r),

where the approximation for the correlation, Eq. (6.6), has been used for the correlation function.
The extra factor of 1/3 in the expression for κ comes from assuming that v(~r) is rotationally
symmetric, so that the integral with r2

x is one third the integral with r2. The term Vlocal is the
contribution to the potential energy when density gradients are neglected. We will drop the
subscript “local” and simply consider V(ρ̄) to be the free energy density of a system at uniform
density. Assuming that other contributions to the energy do not contribute to the∇2 term, the
free energy becomes:

F =

∫
d3x

[
V(ρ̄(~x))−

κ

2
ρ̄(~x)∇2ρ̄(~x)

]
(6.10)

=

∫
d3x

[
V(ρ̄(~x)) +

κ

2
(∇ρ̄)2

]
.
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where the last step involved integrating by parts. Because the definition of density implies an
average the “bar” over ρ̄ can be dropped .

An obvious question concerns how one might justify dropping higher order gradients in the
Taylor expansion of ρ(~x′). Certainly, such terms should exist. Calculating such higher-order
terms would involve finding expressions for coefficients like were found for κ in Eq. (6.10)
above. However, rather than one extra power of r2 as in Eq. (6.10), one would find powers
of r4, r6 · · · . If the potential v(r) falls off exponentially with a sufficiently short range, these
terms can be neglected, and even if they fall off with a power-law (such as 1/r6 for the Lennard-
Jones potential) screening effects often give an exponential fall-off which results in exponential
behavior for large r, which keeps the coefficients finite. If one follows through with the algebra
for the extra terms, they will fall off as a ratio of the interaction range to the characteristic length
for the density changing, (Rint/Lchar)

n. Thus, the higher-order terms can be neglected if one
is considering variations of the density on length scales much greater than the range of the
interaction.

One common mistake students make when seeing a mean-field theory is to assume that the
gradient term originated from kinetic terms in the microscopic equations of motion. Instead,
such terms originate from attractive short-range interactions. In fact, if the interactions were
repulsive κ would have the wrong sign. The terms do, however, represent kinetic-energy type
terms in the free energy. For instance, if V is quadratic in the fields, one can express the free
energy as a sum of independent contributions from “momentum” modes where δρ ∼ sin(kx).
In that case, the ∇2 term in the free energy behaves as k2, just as it would for free particles or
sound modes.

We re-emphasize that the application of field theories is based on the assumption that the char-
acteristic length scale of fluctuations is much larger than the range of interaction. It is also as-
sumed that the scale is greater than characteristic quantum length scalses, such as the thermal
wavelength ~/sqrtmT , or the inverse Fermi momentum, ~/pF . If one is considering scales of
the order of these quantum length scales, one should use a quantum approach such as density-
functional theory.

Quantum field theories are often required to study dynamical quantum excitations, such as
phonons. These theories significantly differ from the classical, Landau, theories described here.
Here, the fields are real quantities like density, whereas quantum fields are often represented by
complex numbers and need to be squared to represent an observable quantity.

6.2 Calculating surface energies in field theory

As discussed in Chapter 3, two phases can co-exist in equilibrium. However, there is a penalty
associated with the boundary. This is referred to as a surface energy or a surface free energy
at finite temperature, and has units of energy per area. To calculate the surface free energy,
we consider a large box where the left side (x << 0) is in a gaseous state and the right side
(x >> 0) is in a liquid state. If A is the area of the y − z plane, the total Helmholtz free energy
(F = E − TS) is

F/A =

∫
dx

[
V(ρ(x)) +

κ

2
(∂xρ)2

]
. (6.11)
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Our goal is to find the density profile that minimizes the free energy given the constraint that it
has the density of the gas at x = −∞ and the density of the liquid at x = ∞. We will assume
that the temperature is a constant over the profile, which is reasonable if energy moves more
quickly than particles. By having the system able to connect to particle baths at ±∞, one can
state that the chemical potential should be chosen so that µ(x → ∞) = µ(x → −∞) = µ0,
with µ0 being chosen so that the two phases are at equilibrium, i.e., they also have the same
pressure, P (x→∞) = P (x→ −∞) = P0.

The Helmholtz free energy is the quantity one should minimize if a system has fixed particle
number and is connected to a heat bath. If the system can also exchange particles with a bath
whose chemical potential is µ0, one should include the free energy associated with the particles
that have been added or subtracted into the bath. In that case, the number is no longer conserved,
and the quantity to be minimized is

F − µ0N = A

∫
dx

[
V(ρ)− µ0ρ+

κ

2
(∂xρ)2

]
(6.12)

= A

∫
dx

[
−P (ρ) + (µ− µ0)ρ+

κ

2
(∂xρ)2

]
. (6.13)

The last step used the thermodynamic identity that the free energy density for a gas at uniform
density and temperature is V = µρ − P . Figure 6.1 illustrates a plot of −P + (µ − µ0)ρ
as a function of the density for fixed temperature. By picking the appropriate value of µ0 for
the specified temperature T , the two minima are at the same level and phase coexistence can
occur. In fact, at the minima V − µ0ρ = −P , and the statement that both minima are equal is
equivalent to saying that for the specified T , µ0 was chosen so that two densities have the same
pressure.

Figure 6.1: Here, P (ρ, T ) and µ(ρ, T ) are the
pressure and chemical potential of a gas at uni-
form density ρ and temperature T . If the system
is connected to a heat bath with chemical poten-
tial µ0, the system will choose a density to min-
imize−P + (µ−µ0)ρ. If µ0 equals the chemi-
cal potential for phase coexistence, the two min-
ima are degenerate and are located at the coex-
istence densities, ρgas and ρliq for the given T .
A boundary between the two regions must tra-
verse the region of less favorable free-energies,
hence there is a surface free energy as described
in Eq. (6.17). In this expression, the surface en-
ergy is found by integrating over the densities
between the two coexistence values with the in-
tegrand being proportional to the square root of
the height, illustrated by the dashed lines.

The cost of the net free energy for a profile ρ(x) that differs from the two coexistence densities
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is,

∆F/A =

∫
dx

[
−P + (µ− µ0)ρ+

κ

2
(∂xρ)2

]
−
∫
dx (−P0) (6.14)

=

∫
dx

[
P0 − P + (µ− µ0)ρ+

κ

2
(∂xρ)2

]
,

where P0 is the coexistence pressure for the temperature T . The last term,
∫
dx P0, is a constant

for fixed limits, and is subtracted so that the integrand goes to zero at large x, allowing the
integration region to be stated as−∞ < x <∞. The quantity (µ−µ0)ρ+P0−P is represented
by the height of the lines in the shaded region of Fig. 6.1. After replacing dx(∂xρ)2 = dρ(∂xρ),
the integration can be restated in terms of the densities,

∆F/A =

∫ ρliq

ρgas

dρ

[
P0 − P + (µ− µ0)ρ

∂xρ
+
κ

2
∂xρ

]
. (6.15)

Next, one chooses ∂xρ to minimize the free energy. The first term would be minimized by
choosing a step function profile, because there would then be no region in the unfavorable region
described in Fig. 6.1. But for a step function ∂xρ =∞, and the second term would be minimized
by a smooth profile. Minimizing the functional integral yields,

d

d(∂xρ)

[
P0 − P + (µ− µ0)ρ

∂xρ
+
κ

2
∂xρ

]
= 0, (6.16)

∂xρ =

√
2
P0 − P + (µ− µ0)ρ

κ
,

∆F/A =
√

2κ

∫ ρliq

ρgas

dρ
√
P0 − P + (µ− µ0)ρ.

Thus, the coefficient κ is responsible for the surface free energy. If there were no gradient term in
the functional for the free energy, the density profile between equilibrated phases would become
a step function. Looking back at the expression for κ in the previous section shows that surface
energies will be larger for interactions with longer ranges.

Example 6.1:
Let the function ∆Ψ ≡ P0 − P + (µ− µ0)ρ be approximated with the following form,

∆Ψ =
B

2

[
(ρ− ρc)2 − α2

]2
.

Find the surface energy in terms ofB, α and κ.

From Eq. (6.17), the surface energy is

F/A =
√
κB

∫ ρ−ρc=α

ρ−ρc=−α
dρ

√
[(ρ− ρc)2 − α2]2

=
√
κB

∫ α

−α
dx (α2 − x2)

=
4

3
α3
√
κB
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Note that B and α2 would depend on the temperature, and one could even have κ depend on
temperature if one wanted. Because two independent minima no longer exist for T > Tc, the
coefficient α2 goes to zero at Tc, which means that the surface energy also becomes zero.

6.3 Correlations and Susceptibilities in the Critical Region

Correlations, e.g.,

C(~r − ~r′) ≡ 〈(φ∗(~r)− φ̄∗)(φ(~r′)− φ̄)〉, (6.17)
φ̄ ≡ 〈φ〉,

are central to the study of critical phenomena. Note that here we have assumed a complex field,
which has two independent components φr and φi. For this case,

〈φ∗(~r)φ(~r′)〉 = 〈φr(~r)φr(~r′)〉+ 〈φi(~r)φi(~r′)〉. (6.18)

Thus, if one were to solve for correlations of a one-component (real) field, one would divide the
expression derived here for complex fields by a factor of two. We work with complex fields only
because the Fourier transforms are somewhat less painful.

Near the critical point the characteristic length of such correlations approaches infinity. To
demonstrate this, we consider a purely quadratic functional, as the correlations can be found
analytically. The effect of higher-order terms alters the behavior quantitatively (e.g., different
values for the critical exponents), but does not alter the qualitative behavior shown here. For
quadratic potentials,

V(φ) =
A

2
|φ|2, (6.19)

the problem can be divided into individual modes:

F =

∫
d3r f =

∫
d3r

[
A

2
|φ|2 +

κ

2
|∇φ|2

]
(6.20)

=
1

2

∑
~k

(
A+ κk2

) ∣∣∣φ̃~k∣∣∣2 , (6.21)

where the Fourier and inverse-Fourier transforms are defined by

φ̃~k ≡
1
√
V

∫
d3r ei

~k·~rφ(~r), (6.22)

φ(~r) =
1
√
V

∑
~k

e−i
~k·~rφ̃~k .

Because the modes are independent, and therefore uncorrelated, the correlation in terms of mo-
mentum components is straight-forward,

〈φ̃∗~kφ̃~k′〉 = δ~k,~k′〈
∣∣∣φ̃~k∣∣∣2〉 (6.23)

= δ~k,~k′
2T

(A+ κk2)
,
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where the equipartition theory was used for the last step, i.e. if the free energy behaves asα|φ|2,
thenα〈|φ|2〉 = T . The reason it is not T/2 comes from the factφ is complex and |φ|2 = φ2

r+φ
2
i .

One can now calculate the correlation in coordinate space,

〈φ∗(~r)φ(~r′)〉 =
1

V

∑
~k,~k′

ei
~k·~r−i~k′·~r′〈φ̃∗~kφ̃~k′〉 (6.24)

=
1

V

∑
~k

ei
~k·(~r−~r′) 2T

(A+ κk2)
.

Here, the last term employed the equipartition theorem, Eq (6.23). Now, the sum over modes
can be transformed to an integral,

〈φ∗(~r)φ(~r′)〉 =
1

(2π)3

∫
d3k ei

~k·(~r−~r′) 2T

(A+ κk2)
. (6.25)

This integral can be performed by first integrating over the angle between ~k and (~r − ~r′), then
performing a contour integration,

〈φ∗(~r)φ(~r′ = 0)〉 =
1

2π2r

∫ ∞
−∞

kdk sin(kr)
T

(A+ κk2)
(6.26)

=
T

2πκr
e−r/ξ, ξ =

√
κ/A.

Here, ξ is referred to as the correlation length. Near the critical point, the curvature of the free-
energy w.r.t. the order parameter φ switches sign, and as A goes to zero, ξ → ∞. The fact that
this length becomes much larger than any driving microscopic length legitimizes the scaling
arguments used in the discussion of critical phenomena in the next section.

In the case where φ refers to the magnetization density m(~r), the correlation function also pro-
vides the magnetic susceptibility,

χ ≡
d

dB
〈m(~r = 0)〉 (6.27)

=
d

dB

Tr e−β[H0−
∫
d3rµBm(~r)]m(~r = 0)

Tr e−β[H0−
∫
d3rµBm(~r)]

=
µ

T

∫
d3r Tr e−βHm(~r)m(~r = 0)

Tre−βH
−
µ

T

[
Tre−βHm(~r = 0)

] [∫
d3r Tr e−βHm(~r)

]
[Tr e−βH]2

=
µ

T

∫
d3r

{
〈m(~r)m(~r = 0)〉 − m̄2

}
(6.28)

=
µ

T

∫
d3r {〈(m(~r)− m̄)(m(~r = 0)− m̄)〉}

=
µ

κ

∫
rdr e−r/ξ

= µ
ξ2

κ
,
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where Eq. (6.26) was inserted into the expression for the correlation in the second-to-last step,
and a factor of 1/2 was added to account for the fact that this is not a complex field. Relations
such as this are common in linear response theory. Linear response theory considers the change
of an observable 〈δa〉 due to a small field that couples to a second observable b, Hint = bδF .
This dependence can be expressed in terms of a generalized susceptibility, χ, where δa = χδF
defines χ. A central theme of linear response theory is that χ can be expressed in terms of
correlations of the type 〈a(0)b(r)〉. More about linear response theory can be found in Chapter
8, or in the first two chapters of Forster1. Equation (6.28) will be important in the next sections as
it will be used to connect the divergent behavior of the correlation function at the critical point
to other quantities such as the susceptibilities and specific heat.

The third line of Eq. (6.27) is actually not completely correct.

∂γTrAe−βH0−γB 6= −TrABe−βH0−γB,

when the operator B does not commute with H0. This is because e−βH0−γB 6= e−βH0e−γB,
unless the operators commute. However, in the classical limit operators commute and any non-
commutation of operators typically brings in a power of ~. Thuys, Eq. (6.27) is correct in the
classical limit. This is sometimes described as an expansion in ~.

6.4 Critical Exponents in Landau Theory

Here, we continue with the assumption that a system’s field is fluctuating near the optimized
(mininum of V(φ)), and that in this region one can consider only the quadratic dependence,

V(φ) ≈ V0 +
A

2
|φ|2. (6.29)

The curvature,A, changes sign at the critical point. One can parameterize this as:

A(T ) = at, t ≡ (T − Tc)/Tc. (6.30)

Thus, the correlation length diverges as t−1/2 (see Eq. (6.26)) and the susceptibility (in the case
of magnetization) diverges as t−1 (see Eq. (6.28)),

ξ =

√
κ

A
=
√
κ/a t−1/2, (6.31)

χ =
µξ2

κ
=
µ

a
t−1.

The exponents describing the divergences here are known as critical exponents. In Landau the-
ory, all three-dimensional systems would have the same critical exponents,

ξ ∼ |t|−ν, ν = 1/2, (6.32)
χ ∼ |t|−γ, γ = 1.

1D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
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The specific heat is also divergent, but to see that we must first calculate the free energy. Equation
(6.20) gives the free energy for a particular set of amplitudes φ1, φ2 · · · . To calculate the free
energy of the entire system, one must sum over all the possible values of φi,

Ftot = −T ln
∑

all configurations φ1,φ2···

e−F (φ1,φ2··· )/T , (6.33)

where F can be written as a sum over individual modes ~k,

Ftot = −T
∑
~k

ln

(∑
φk

e−Fk(φk)/T

)
. (6.34)

As was shown in the path integral discussions of Chapter 3, the sum over statesφk can be written
as an integral over the real and imaginary parts of φk, so that the partition function becomes

e−Fk/T =
1

2π

∫
dφrdφi e

−(1/2)(A+κk2)|φk|2, (6.35)

∼ (A+ κk2)−1,

where the last expression ignores additive constants. Finally, the total free energy of the system
will be

Ftot = T
∑
~k

ln(A+ κk2). (6.36)

This expression applies for any dimensionality, but dimensionality will play a role once the sum
over momentum modes is expressed as an integral.

After insertingA = at, one can solve for the contribution to the specific heat from the tempera-
ture dependence in A. Because lnZ = −F/T , one can first take a derivative of F/T w.r.t. t to
get an expression for the energy density, then take a second derivative to find the specific heat.
The results for three dimensions is

CV /V =
a2

(2π)3

∫
d3k

1

(at+ κk2)2
∼ t−1/2. (6.37)

This last term represents another critical exponent,

CV ∼ t−α, α = 1/2. (6.38)

Another critical exponent describes the rise of the mean magnetization for temperatures just
below Tc. In our approximation, we consider only small fluctuations about the free energy
minimum, and our choice of the mean magnetization comes from the mean-field approximation
from Eq. (5.19) in Chapter 5,

〈m〉 ∼ |t|β, β = 1/2. (6.39)

Finally, for an external field with T = Tc, mean field theory gives (see the homework problem
in this chapter)

〈m〉 ∼ (µB)1/δ, δ = 3. (6.40)
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The divergence of the specific heat is related to the divergence of the integrand in Eq. (6.37)
when t is set to zero. Note that for d dimensions, the integrand goes as dk k(d−1)/k4, which will
be divergent for d ≤ 3. Thus, in four dimensions or higher, the specific heat is well defined at
t→ 0, whereas the behavior is more complicated for the two- and three-dimensional cases.

Summarizing the critical exponents in Landau theory,

〈φ(0)φ(r)〉 ∼ ξ2−d(r/ξ)(1−d)/2e−r/ξ, ξ ∼ t−ν, ν = 1/2, (6.41)
Cv ∼ t−α, α = 2− d/2,

< m > (t = 0) ∼ H1/δ, δ = 3,

< m > (H = 0, t < 0) ∼ tβ, β = 1/2,

χ ∼ t−γ, γ = 1,

where d is the dimensionality. We will see in the next two sections that Landau theory is not
valid near Tc for d ≤ 3. Nonetheless, the features of Landau theory are qualitatively correct, and
most importantly, the correct method for visualizing critical behavior requires Landau theory for
perspective.

6.5 Validity of Landau Theory Near Tc: The Ginzburg Criteria

The exponents above were based on an assumption that one could ignore the quartic piece of
the free energy density, which would only be justified if fluctuations of the order parameter were
small compared to the mean value. To see whether that is the case, we consider the quartic case

V =
A

2
|φ|2 +

B

4
|φ|4, (6.42)

whereA = at. For t < 0,A is negative and two distinct minima develop

〈|φ|〉2 = −A/B = −at/B. (6.43)

We will consider the case for t > 0, which means that the minimum is located at φ = 0, but that
as t→ 0, the fluctuations will become large. The correlation, see Eq. (6.26), has the form,

〈φ(0)φ(r)〉 ∼
T

κ
ξ2−d(r/ξ)(1−d)/2e−r/ξ. (6.44)

This expression was derived exactly for three dimensions previously, see Eq. (6.26). The integrals
for the three-dimensional integration can be generalized for an arbitrary number of dimensions
d in the limit that r is large, resulting in the expression above. If one uses r = ξ as a characteristic
length scale for comparison, the typical size for fluctuations are:

〈δφδφ〉typical ∼
T

κ
ξ2−d, (6.45)

where dimensionless constants such as (2π)d are ignored. For mean-field theory to be valid, one
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must justify ignoring the quartic piece in the free energy above, or
A

2
〈δφδφ〉typical >>

B

4
〈δφδφ〉2typical, (6.46)

A

2
>>

B

4
〈δφδφ〉typical,

at >> B
T

κ
ξ2−d.

Because
ξ ∼

√
κ/at−1/2, (6.47)

the criteria for validity becomes

t2−d/2 >> BTcκ
−d/2a−2+d/2. (6.48)

As the critical point is approached t → 0, the criteria will be satisfied for d > 4. However,
Landau field theory is unjustified in the critical region for three dimensions or fewer.

Despite the fact that the theory is unjustified in the three-dimensional world, Landau theory is
still enormously useful. First, the theory is still justified away from the critical point, depending
on the parameters. Secondly, it is qualitatively correct in many aspects and represents a crucial
perspective from which one can understand the more correct approaches based on scaling and
renormalization, which are also field theories, but differ in that they consider the effects of the
φ4 term.

6.6 Critical Phenomena, Scaling and Exponents

Phase transitions can be classified as either first or second order. First-order transitions are char-
acterized by co-existing phases with the order parameter being different in the two phases. In
second-order transitions the derivative (or perhaps nth-order derivative) of the order parameter
is discontinuous. The term “order parameter” refers to any measure, not even necessarily ex-
perimentally accessible, used to describe a system in a given state. Examples are the magnetiza-
tion density (ferromagnetic transition), number density (liquid-gas transition), quark-antiquark
condensate (chiral transition), Higg’s condensate (electro-weak transition), or field phase (su-
perconductivity). Quantities that involve comparing systems with different conditions, such as
the specific heat, which involves comparing the entropy at two different temperatures, or the
susceptibility, which involves comparing the magnetization at two different external fields, are
not order parameters.

Transitions can belong to any of several universality classes, a grouping determined by the sym-
metry associated with the phase transition. For instance, in theX −Y model the system breaks
two-dimensional rotational symmetry by choosing a specific direction for aligning spins. The
three-dimensional analog, the Heisenberg model, has a higher degree of symmetry, hence be-
longs to a different universality class and has different critical exponents, which will be intro-
duced further below.

At Tc Landau’s field theory gave the following form for the correlation function for magnetiza-
tion density in the previous section,

Γ(r) ≡ 〈m(r = 0)m(~r)〉 ∼
1

r
e−r/ξ, ξ =

√
κ/A, (6.49)
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where the free energy density was treated in the Gaussian approximation,

f ≈
A

2
m2 +

κ

2
(∇m)2. (6.50)

Here,A is a function of temperature. At Tc, the sign ofAwill switch, and the correlation length
diverges as

ξ =

√
κ

dA/dT
(T − Tc)−1/2 ∼ t−1/2, t ≡

T − Tc
Tc

. (6.51)

In interacting theories, interactions change the behavior of ξ near Tc quantitatively, but not qual-
itatively. Quantum aspects of the interactions lead to screening effects that can be understood in
renormalization calculations, but are beyond the scope of this class (See Chapter 18 in Huang).

Scaling arguments are based on the assumption that as t → 0, the correlation functions lose all
memory of scale and behave purely as a power.

Γ(r) ∼ r2−d−ηe−r/ξ, ξ ∼ t−ν. (6.52)

Here, d is the number of dimensions. As t → 0 only the power-law behavior remains. Rather
than assume a power behavior∼ r−p, the unknown exponent p is replaced with 2−d−η, so that
in the Landau limit η = 0 for three dimensions. In the three-dimensional Landau calculation,
d = 3, the two critical exponents are

η = 0, ν = 1/2. (6.53)

If d 6= 3, η = (3 − d)/2 in the Landau case. However, in the real world they vary from these
values, depending on the universality class.

The other four critical exponents used in the last section (α, β, γ, δ) are all determined by η and
ν. The relations can best be understood from dimensional analysis. These arguments are based
on two assumptions:

1. The non-analytic part of the free energy density scales proportional to ∼ 1/ξd. From
dimensional grounds, if ξ is the only relevant length scale, and because the free-energy
density has dimensions of Energy/Ld, it must behave as ξ−d, or equivalently as tdν . This
is based on a scaling argument that if one looks at a fluctuation of sizeX = Cξ at temper-
ature t, it will have the same free energy as a fluctuation of size X ′ = Cξ′ at temperature
t′. Assuming ξ behaves as t−ν , the free energy scales as tdν , and the specific heat, which
one obtains by taking two derivatives w.r.t. t, behaves as t−(2−dν). From Eq. (6.41), one
can then see that the critical exponent α = 2− dν.

2. The magnetization and fields all behave as if they have effective dimensionalities, such
that changing t, which causes a scale change of ξ, will scale all quantities according to
their effective dimensionality. Thus if 〈m〉 behaves as tβ, Γ must behave as t2β if evaluated
at the same value of r/ξ, which given the form of the correlation function in Eq. (6.52),
requires that

Γ(r/ξ = 1, t) ∼ t2β, (6.54)
ξ2−d−η ∼ t2β,

tν(d+η−2) ∼ t2β,

β =
1

2
ν(d+ η − 2).
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One would have obtained the same result for any choice of r as long as the comparison
(before and after the temperature change) was done at the same value of r/ξ. The field
H must scale so that the free energy in a fluctuation of characteristic size,mHξd, must be
independent of t. This means that ifH ∼ mδ, andm ∼ tβ, then

m1+δξd ∼ t0, (6.55)
tβ(1+δ)t−dν ∼ t0,

β(1 + δ)− dν = 0,

δ =
d− η + 2

d+ η − 2

Finally, the susceptibility must have the same scaling asm/H , or

χ ∼ m1−δ ∼ tβ(1−δ) (6.56)
−γ = β(1− δ) = ν(2− η).

Summarizing these arguments, one can express critical exponents as follows:

〈φ(0)φ(r)〉 ∼ r2−d−ηe−r/ξ, ξ ∼ t−ν, (6.57)
Cv ∼ t−α, α = 2− dν,

< m > (t = 0) ∼ H1/δ, δ =
d− η + 2

d+ η − 2
,

< m > (H = 0, t < 0) ∼ tβ, β = ν(d+ η − 2)/2,

χ ∼ t−γ, γ = ν(2− η),

where only two of the six exponents are independent. Here, we have used the two exponents
used to describe the behavior of the correlation function, η and ν, to define the remaining four.
Because the correlation function Γ(r) would nominally have dimensions of L2−d, the exponent
η is often referred to as the anomalous dimension. It is noteworthy that the scaling relations
above are violated in Landau theory, as can be seen by comparing the mean-field value, β = 1/2,
to the expression for β above. This stems from the fact that Landau theory is not based on scaling
arguments, and as emphasized by the Ginzburg criteria, should not be applicable for systems of
dimensions less than four near Tc.

The relations above were finally rigorously justified with renormalization theory. For this Ken
Wilson was awarded the Nobel prize. Renormalization theory is beyond what we will cover in
this class, but the interested student should read Chapter 18 of Huang.

6.7 Symmetry Breaking and Universality Classes

In Landau theory, the critical exponents were all determined by the dimensionality alone, and
several were even independent of the dimensions, e.g. β in Eq. (6.41). However, in nature they
are determined by the symmetry breaking involved in the problem. For instance, if there is a
single real field φwhose free energy density is of the “mexican hat” form,

f =
A

2
φ2 +

B

4
φ4, (6.58)
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the system must choose whether to create a field with 〈φ〉 > 0 or < 0 when A becomes neg-
ative. For a complex field with a free energy density of the same form, φ2 → φ∗φ, the system
must also choose the complex phase. For a system where the spins are allowed to align in any
direction, the system must choose a direction (θ, φ) on which to align. Each of these three ex-
amples represents a different symmetry breaking and leads to different exponents. The critical
exponents are determined by the symmetry breaking and dimensionality, and problems of the
same symmetry breaking and dimensionality have identical critical exponents and are referred
to as being in the same universality class. The breaking of the symmetry at low temperature is
called spontaneous symmetry breaking, as opposed to the breaking of the symmetry by adding an
external field, which is referred to as explicit symmetry breaking.

For the broken reflection symmetry above, the system chooses between two discrete minima,
whereas for the example of the complex field or for the spin alignment, the set of possible min-
ima form an infinite continuous set. These symmetries are called continuous symmetries and
have the property that, after being broken, one can make incremental changes in the field while
maintaining a minimum in the free energy. In contrast, the real-field case only has a reflection
symmetry, which is referred to as a discrete symmetry. For instance, consider the case of the com-
plex field. Writing the free energy density in terms of the real and imaginary parts, φx and φy,

f =
A

2
(φ2

x + φ2
y) +

B

4

(
φ2
x + φ2

y

)2

+
κ

2
(∇φ)2, (6.59)

where we consider the case where α < 0 and minima appear for

(φ2
x + φ2

y) = φ2
0 = −

A

B
. (6.60)

If one expands around the minima in the x direction, one can rewrite the fields as

δφx = φx − φ0, δφy = φy. (6.61)

Rewriting the free energy in terms of δφx and δφy,

f ≈ fmin +
1

2
δφ2

x

∂2f

∂2φx
+

1

2
δφ2

y

∂2f

∂2φy
+
κ

2
(∇φ)2 (6.62)

= fmin +
1

2
Axδφ

2
x +

1

2
Ayδφ

2
y +

κ

2
(∇δφx)2 +

κ

2
(∇δφy)2,

Ax = −2A, Ay = 0.

Thus, the y mode contributes to the free energy only through the term proportional to (∇δφy)2,
or in momentum space, the modes contribute to the free energy as k2. For relativistic field
theories, modes for which the contribution vanishes as k→ 0 are called massless modes as they
have no energy as k → 0. These modes are also referred to as Goldstone bosons (Goldstone
derived the general idea that massless modes should be associated with breaking a continuous
symmetry) or Nambu-Goldstone bosons. Although the most famous example of such symmetry
breaking is the electro-weak transition in particle physics, Higgs, Goldstone and Nambu were
also concerned with the nuclear physics problem of chiral symmetry breaking, and of course
Landau was most concerned with problems in condensed matter physics, the most famous of
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which is Ginzburg-Landau theory for superconductivity, which employs precisely this model of
complex scalar fields.

In the linear sigma model for nuclear physics, one considers a four-component field, ~φ, where
φ0 refers to the σ field, which in QCD is related to the quark-antiquark condensate, and φ1,2,3

are the three pionic fields. The Hamiltonian contains terms of the form,

V (φ) = −
m2

0

2

(
φ2

0 + φ2
1 + φ2

2 + φ2
3

)
+
λ

4

(
φ2

0 + φ2
1 + φ2

2 + φ2
3

)2
. (6.63)

Because the first term is negative, spontaneous symmetry breaking ensues. Defining the direc-
tion of the condensate as the “zero” direction, the condensate generated is

〈φ0〉 =

√
m0

λ
. (6.64)

This would result in one massive mode, from the curvature of the potential in the “zero” direc-
tion and three massless modes, because at the minimum,

d2V

dφ2
i

∣∣∣∣
φ0=
√
m0/λ

= 0, i = 1, 2, 3. (6.65)

This would predict three Goldstone bosons, which would be massless pions. In nature, pions are
indeed very light, but not massless. This is accounted for by adding a small term proportional to
φ0 in V , which explicitly breaks the symmetry, and makes the original symmetry approximate.
The symmetries of the linear sigma model derive from underlying chiral symmetries in QCD,
which is again only an approximate symmetry. The symmetry is broken by the small current
quark masses,≈ 5 MeV/c2.

In electroweak physics, i.e., the Weinberg-Salam model, the situation is more complicated due
to the gauge nature of the theory. Again, there are four scalar fields, or two complex scalar
fields, with similar quadratic and quartic couplings. The symmetry breaking is the same, but
the three accompanying scalar fields do not become massless due to their gauge coupling with
other particles. Remarkably, the three fields play the part of the longitudinal component of the
W± and Z massive fields. Whereas the W and Z are massless in the bare Lagrangian, and
have only two polarizations, they pick up mass through the symmetry breaking, which requires
three polarizations. That extra degree of freedom is provided by the three scalar fields. The
lack of Goldstone bosons is related to the fact that in a gauge theory, the local phases of fields
is non-observable by construction. Before symmetry breaking, one cannot think of the field as
a magnitude and phase, because phase is undefined at |φ| = 0. The two complex fields, thus
contribute four degrees of freedom to the specific heat. Once symmetry is broken, there is a
magnitude and three non-observable phases. But by introducing φ→ φ0 + δφ, the condensate
φ0 couples to the W± and Z bosons to provide masses. Whereas massless vector bosons have
two polarizations, massive vector bosons have three. This requires one extra degree of freedom
for each of the W± and Z bosons. These compensate for the loss of three degrees of freedom
from the scalar fields. This transference of degrees of freedom from the scalar to the vector
modes during the symmetry breaking, and the associated lack of Goldstone bosons, is known as
the Higgs mechanism.
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It is no exaggeration to state that the most important problems addressed in the last 40 years
in nuclear, particle, and condensed-matter physics concern spontaneously broken symmetries.
Furthermore, one of the most exciting astronomical measurements, that of fluctuations of the
3-degree background radiation is related to inflation, which might be associated with the break-
ing of the electro-weak symmetries or perhaps grand unified theories, under which quarks and
leptons appear in a single fermionic multiplet and the gauge bosons all correspond to generators
of a single group.

6.8 Problems

1. Consider the example for which the surface energy was calculated, where

∆Ψ ≡ P0 − P + (µ− µ0)ρ =
A

2

[
(ρ− ρc)2 − α2

]2
.

Using the second line of Eq. (6.16), solve for the density profile ρ(x) between the two
phases.

2. Consider the one-dimensional Ising model, with the total energy in the mean field approx-
imation being,

E = −
∑
i

1

2
qJ〈σ〉σi.

Note the factor of 1/2 being added relative to the effective energy for one mode to account
for double counting.

(a) Using the definition of entropy,−
∑
i pi ln(pi), show that the entropy per spin is:

S/N = −
1 + 〈σ〉

2
ln

(
1 + 〈σ〉

2

)
−

1− 〈σ〉
2

ln

(
1− 〈σ〉

2

)
.

(b) The free-energy, F = E − TS, per spin is then

F/N = −
1

2
qJ〈σ〉2 + T

(1 + 〈σ〉)
2

ln

(
1 + 〈σ〉

2

)
+ T

(1− 〈σ〉)
2

ln

(
1− 〈σ〉

2

)
.

Show that minimizing the free energy w.r.t. 〈σ〉 gives:

2βqJ〈σ〉 = ln

(
(1 + 〈σ〉)
(1− 〈σ〉)

)
.

(c) Compare the expression above to that from the previous expression,

〈σ〉 = tanh(βqJ〈σ〉).

(d) If the density of spin sites per unit volume is ρ0, the free energy density is

f(σ, T ) = ρ0

{
V(σ, T ) +

κ

2
(∇σ)2

}
,

V(σ, T ) = −
1

2
qJσ2 + T

(1 + σ)

2
ln

(
1 + σ

2

)
+ T

(1− σ)

2
ln

(
1− σ

2

)
.
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Derive an expression for the surface free energy that is an integral over σ with lim-
its from −σeq and +σeq. Write the integrand in terms of ρ0, κ, T and R(σ, T ) ≡
V(σ, T ) − V(σeq, T ), where σeq is the solution to the transcendental expression for
the equilibrated value for 〈σ〉.

(e) Find the surface energy in the limit that T → 0 in terms of κ, ρ0 and Tc = qJ .

3. Repeat the calculation for the correlation function from Sec. 6.3 for the one dimensional
case. In this case, the Fourier transforms are defined as:

φ̃k ≡
1
√
L

∫
dx eikxφ(x),

φ(x) =
1
√
L

∑
k

e−ikxφk.

4. Beginning with the definition of the average density,

〈ρ〉 =
Tr e−βH+βµ

∫
d3rρ(~r)ρ(~r = 0)

Tr e−βH+βµ
∫
d3rρ(~r)

,

prove the following relation between the density-density correlation function and dρ/dµ,

T
d〈ρ〉
dµ

=

∫
d3r

{
〈ρ(~r)ρ(~r = 0)〉− < ρ >2

}
.

5. Returning to the expression for the mean spin in the Ising model in the mean field approx-
imation,

〈σ〉 = tanh(βqJ〈σ〉+ βµB),

solve for 〈σ〉 in the limit that µB is small and T = Tc. Note this provides the exponent δ
in mean field theory. Hint: Expand tanh and keep only the lowest order non-zero terms
for both 〈σ〉 and for µB.

6. Assume the following form for the correlation function,

〈m(0)m(r)〉 − 〈m〉2 = Cr2−d−ηe−r/ξ, ξ ∼ t−ν

near Tc.

(a) Find the susceptibility using Eq. (8.38) in terms of C, ξ, η and the dimensionality d.
When expressing your answer, you can use the shorthand Ωd for

∫
dΩ in d dimen-

sions, i.e., ∫
ddr... =

∫
dΩ rd−1dr...

For your entertainment, Ωd = 2πd/2/Γ(d/2).

(b) If χ diverges as t−γ near Tc, find γ in terms of η and ν.
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7. Assume that the free energy obeys the following form,

F =

∫
d3r

{
A

2
φ2 +

C

2
φ6

}
.

Assuming that near Tc,A ∼ at, find the critical exponent in mean field theory β where,

〈φ〉 ∼ tβ

below Tc.
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7 Advanced Methods for Treating Interactions

“Our strength grows out of our weaknesses” – Ralph Waldo Emerson

7.1 Perturbation Theory

The pressureP (µ, T ), density ρ(µ, T ), and energy densityE/V (µ, T ), are all affected by inter-
actions. Because all such quantities are derived from the partition function, we will concentrate
on calculating the alteration of the partition function. The relations

E = −(∂/∂β) lnZGC, ρ = (T/V )(∂/∂µ) lnZGC, P/T = (∂/∂V ) lnZGC, (7.1)

hold for any system, interacting or not.

The modern way to include interactions is through perturbation theory. An alternative method is
based on “Mayer cluster diagrams”, but is applicable only for classical systems with interactions
of the type,

Hint =

∫
d3rad

3rbV (ra − rb)ρ(ra)ρ(rb). (7.2)

The cluster technique is well described in Pathria (Statistical Mechanics, R.K. Pathria, Pergam-
mon, or in Huang, Sec. 10.1). More general interactions might involve exchanging off-shell
photons or gluons. Because the standard methods of quantum perturbation theory apply to
all cases, and naturally incorporate relativity and quantum mechanics, we will focus on these
methods. Our discussion will stay brief. Perturbation theory at finite temperature can easily be
a subject for an entire course.

Perturbation theory at finite temperature concerns calculation of ZGC ,

ZGC =
∑
i

〈i|e−β(H−µQ)|i〉, (7.3)

where i refers to specific quantum states. Even if the system has 1023 particles, and is interacting,
eigen-states for the bulk system still exist. We will separate H − µQ into two parts, H0 and
V , where H0 is usually considered to be the part for which the state is expressed simply by
listing which single-particle states are occupied, i.e., the many-body wave function is a product
of single-particle wave functions. We note that in our notationH0 includes the contribution from
−µQ. In the language of creation and destruction operators, H0 is usually the part of the field
which can be written as

∑
i(εi−µ)a†iai, while the interaction V represents all other parts of the

Hamiltonian where the creation and destruction operators appear in higher powers. The eigen-
states are often momentum eigen-states, though they might also be eigen-states of a classical
field. In the nuclear shell model, one uses a basis of harmonic-oscillator eigen-states, while
in some other variants of nuclear many-body theory one might use eigen-states of a potential
v(r), chosen to be consistent with the density. In nuclear physics the interaction V is also often
referred to as the “residual” interaction, referring to the fact that it is what is left over after having
absorbed as much as possible into the effective potential v(r).
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After identifying V , one moves to the interaction representation, with the definitions,

Uint(β) ≡ eβH0e−βH, (7.4)
V (β) ≡ eβH0V e−βH0,

which leads to the relation for the evolution operator U ,

∂

∂β
Uint(β) = eβH0H0e

−βH − eβH0(H0 + V )e−βH = −eβH0V e−βH (7.5)

= −V (β)Uint(β).

The goal is to calculate the partition function,

ZGC = Tr e−βH0Uint(β). (7.6)

This is the standard technique for quantum perturbation theory in the interaction representa-
tion, only in those cases one is calculating the evolution operator e−iHt. The derivations are
equivalent, except that it/~ is replaced with β. Thus, the Boltzmann factor is identified with
the evolution operator in imaginary time. Furthermore, statistical calculations consider the trace
rather than the expectation between specific initial and final states.

The differential eqaution forU(β) in Eq. (7.5) can be equivalently stated as an integral equation,

Uint(β) = 1−
∫ β

0

dβ′V (β′)Uint(β
′). (7.7)

One can now replace U in the r.h.s. with the complete expression for U to see the iterative
expression,

Uint(β) = 1−
∫ β

0

dβ′ V (β′) +

∫ β

0

dβ′
∫ β′

0

dβ′′ V (β′)V (β′′) (7.8)

−
∫ β

0

dβ′
∫ β′

0

dβ′′
∫ β′′

0

dβ′′′ V (β′)V (β′′)V (β′′′) + · · · .

Here, Uint(β) and V (β) are matrices, with the indices referring to specific states. To overcome
complications associated with the limits for each variable,

Uint(β) = 1− T
∫ β

0

dβ′ V (β′) +
1

2!
T
∫ β

0

dβ′
∫ β

0

dβ′′ V (β′)V (β′′) (7.9)

−
1

3!
T
∫ β

0

dβ′
∫ β

0

dβ′′
∫ β

0

dβ′′′ V (β′)V (β′′)V (β′′′) + · · · ,

where the limits of the various integrations are now independent from one another, with the
fact that the factors V (β) at lower values of β are always pushed to the right by the “time-
ordering” operator T . Because there are n! ways to order such operators, a factor 1/n! is added
to correct for the over-counting. If V (β) were to commute with V (β′) (which would be true
if [V,H0] = 0), the time-ordering operator would be irrelevant, and Uint could be written as
exp{−

∫
dβ′V (β′)}. This would be the case if V were diagonal in the same basis that diago-

nalized H0. This is the case for uniform fields, which might change the energy of a particle of
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momentum p, but does not change the fact that p is an eigenstate. The more general case of scat-
tering does not satisfy the commutation condition as particles with momentum p1 and p2 are
scattered into p′1 and p′2 by V . Some classes of interactions represent exchanges of charge or can
even change the number of quanta. For instance, in the three-point interaction in electro-weak
theory, Vii′ , imight refer to an electron and i′ might refer to a neutrino andW− boson.

The states i and i′ in the matrices Vii′ used in perturbation theory are many-body states, with i
labeling the configuration of perhaps 1023 particles. However, the interaction V rarely involves
all the quanta. Instead, it might involve changing the state of two particles, say those with mo-
mentum p1 and p2 to p′1 and p′2. For this two-particle-to-two-particle case, we consider two
particles interacting non-relativistically through a potential U(r1− r2). This interaction is diag-
onal in the r1, r2 basis (but clearly not diagonal in the p1, p2 basis) because the particles do not
move instantaneously and

〈r1, r2|V |r′1, r
′
1〉 = U(r1 − r2)δ3(r1 − r′1)δ3(r2 − r′2). (7.10)

The same interaction sandwiched between momentum states describes a change in the relative
momentum,

q ≡ p1 − p2 → q′ ≡ p′1 − p′2, (7.11)

with the total momentum not changing. This is expected given the translation invariance of the
interaction. Performing the machinations,

〈p1, p2|V |p′1, p
′
2〉 =

∫
d3r1d

3r2d
3r′1d

3r′2 〈p1, p2|r1, r2〉〈r1, r2|V |r′1, r
′
2〉〈r

′
1, r
′
2|p
′
1, p
′
2〉 (7.12)

=
1

V 2

∫
d3r1d

3r2 e
ip1·r1/~+ip2·r2/~U(r1 − r2)e−ip

′
1·r1/~−ip′2·r2/~

=
1

V 2

∫
d3R ei(P−P′)·R/~ d3r ei(q−q′)·r/~U(r)

=

{
= (2π~)3

V 2 δ3(P− P′)Ũ(k ≡ (q− q′)/~), if P = P′ not yet constrained.

= 1
V
Ũ(k ≡ (q− q′)/~), if P = P′ already constrained.

r = r1 − r2, P = p1 + p2, R =
m1r1 +m2r2

m1 +m2

, q =
m2p1 −m1p2

m1 +m2

.

The inverse powers of the volume, which originated from having normalized wave functions
eikx/

√
V , will disappear when summing over the density of states, and are often omitted in

many text books. Thus, the matrix element between two-particle states typically includes a δ
function representing the conservation of momentum and the Fourier transform of the potential
Ũ(k), where k is the difference in the relative momenta (divided by ~) between the incoming
and outgoing states.

For many-body theory, it is more physical to think of the interaction in terms of creation and
destruction operators. In that case,

V =
1

V

∑
p′1,p

′
2,p1,p2

〈p1, p2|V |p′1, p
′
2〉a
†
p1
a†p2ap′1ap′2, (7.13)
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where a†p/ap are creation/destruction operators that create/remove a particle with momentum
p. In the interaction representation, a†p(β) = e−βεpa†p, and

V (β) =
∑

p′1,p
′
2,p1,p2

〈p1, p2|V |p′1, p
′
2〉a
†
p′1
a†p′2
ap1ap2e

−β(ε′1+ε′2−ε1−ε2). (7.14)

For such a two-particle-to-two-particle matrix element, V (β) would destroy particles with mo-
mentum p1 and p2, then create two new particles with p′1 and p′2. The initial many-particle state
i might undergo several combinations of V at the various “times” before being returned to its
original configuration, as demanded by the trace. For some applications, V (β) might refer to
the annihilation of one particle and the creation of two particles, such as in the decay of a W
boson into an electron and a neutrino. Similarly, the merging of the electron and neutrino into
a W boson would be represented by a term with two annihilation operators and one creation
operator.

Our immediate goal is to show how perturbation theory, whose formalism refers to many-body
states, can be rewritten in terms of matrix elements involving only a few particles. We will see
that when one calculates the log of the partition function, that indeed, the corrections due to
interactions involve the consideration of matrix elements such as those in Eq. (7.12) that involve
only a few particles at a time.

To accomplish the reduction mentioned above, we will first show how the nth -order contribu-
tion in the perturbative expansion of the grand canonical partition functionZ (TheGC subscript
will be suppressed) can be factorized into a “connected” piece and a lower-order term for the
expansion of Z. The nth order term is:

Zn =
(−1)n

n!

∫ β

0

dβ1 · · · dβn
∑
i

T
〈
i|e−βH0V (β1) · · ·V (βn)|i

〉
(7.15)

We now consider the specific term V (β1) as illustrated a specific path illustrated in Fig. 7.1.
Each vertex represents a two-body-to-two-body matrix element, with the two incoming lines
(from the left) representing the annihilated momenta, and the two outgoing lines (to the right)
representing the new momenta.

The term V (β1) will be “connected” to those other potential terms V (βi) for which one can
form an independent chain of initial momenta which are transformed then return to the same
independent momenta. In the figure the number of such terms is m = 5. By careful inspection
one can see that the remainder of the matrix element is independent and factorizes away from
those terms connected to V (β1). One can re-express Zn as a sum over allm,

Zn =
(−1)n

n!

∑
m≤n

(n− 1)!

(m− 1)!(n−m)!

[∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected

]
·
[∫

dβ′1 · · · dβ
′
n−m T

〈〈
V (β′1) · · ·V (β′n−m)

〉〉]
(7.16)

=
1

n

∑
m≤n

(−1)mZn−m
1

(m− 1)!

∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected .
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Figure 7.1: This illustrates how a term
T 〈V (β1) · · ·V (βn)〉 might look for n =
11. The term V (β1) is connected in an
m = 5 subdiagram which can be fac-
tored out of the matrix element. The num-
ber of ways that the V (β1) term can be
connected to a group of m out of n is
(n− 1)!/[(n−m)!(m− 1)!].

Here, the double brackets denote the thermal trace, 〈〈A〉〉 =
∑
i〈i|e−βH0A|i〉. The preceeding

1/n factor prevents one from immediately factorizingZ intoZ multiplied by a piece depending
only on connected diagrams. To overcome this limitation, we replace V with λV , where λ = 1.
Then, because Zn will depend on λ as λn, we can write

λ
d

dλ
Z =

∑
n

λ
d

dλ
Zn (7.17)

=
∑
m

∑
n>m

Zn−m
(−1)m

(m− 1)!

∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected

= Z ·
∑
m

(−1)m

(m− 1)!

∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected .

After dividing both sides by Z one finds an expression for lnZ,

d

dλ
lnZ =

1

λ

∑
m

(−1)m

(m− 1)!

∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected . (7.18)

The final expression then comes from noting the the mth-order connected piece behaves as λm.
Thus, one can integrate both sides of the equation from λ = 0 to λ = 1 to obtain our final result:

lnZ = lnZ(V=0) +
∑
m

(−1)m

m!

∫
dβ1 · · · dβm T 〈〈V (β1) · · ·V (βm)〉〉connected . (7.19)

This profound expression permits one to calculate corrections to the partition function for 1023

particles in terms of calculable terms, each of which represents only a few particles.
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Example 7.1:
Consider non-relativistic non-degenerate particles of massm interacting through a potential

U(r) = U0e
−r/a.

Find the correction to the pressure to first-order in perturbation theory for fixed chemical poten-
tial. Give answer in terms of α = (2j + 1)eµ/T .

First, calculate the matrix element from Eq. (7.12). Because the first order expression has the
same momenta in the bra and ket, we are interested in the matrix element 〈p1, p2|V |p1, p2〉,
and the momentum transfer k is zero,

〈p1, p2|V |p1, p2〉 =
1

V
Ũ(k = 0),

=
1

V

∫
d3r U(r).

Now, one can calculate the matrix element necessary for perturbation theory,

〈p1, p2|e−βH0V (β1)|p1, p2〉 = 〈p1, p2|e−βH0e−β1H0V eβ1H0|p1, p2〉 (7.20)

= e−β(P 2/2M+q2/2mred)+2βµ
1

V

∫
d3r U(r).

The exponentials with β1 canceled because the state was the same on the left and right of V .
This cancellation only happens in first-order.

Approaching the home stretch, one now uses Eq. (7.19) to work toward the answer,

lnZ = lnZ0 −
1

2

∑
P,q

(∫ β

0

dβ1e
−β(P 2/2M+q2/2mred)+2βµ

1

V

)∫
d3r U(r)

= lnZ0 − e2βµ
β

2

V (2j + 1)2

(2π~)6

∫
d3P

∫
d3q e−β(P 2/2M+q2/2mred)

∫
d3r U(r)

= lnZ0 −
β

2
V α2

(MT )3/2(mredT )3/2

(2π)3~6

∫
d3r U(r)

= lnZ0 −
1

2

α2V T 2m3

(2π)3~6

∫
d3r U(r)

= lnZ0 − 4πU0a
3
α2V T 2m3

(2π)3~6
.

Here, M = 2m is the total mass of the pair, and mred = m/2 is the reduced mass, and α was
defined as (2j + 1)eµ/T . The preceeding factors of 1/2 correct for double-counting. It is good
practice to check the dimensions after a calculations such as this. In this case, all the units cancel
as lnZ is dimensionless.

Although this example may have seen somewhat lengthy, it is the simplest example of a cal-
culation that one can do in perturbation theory at finite T . When performing higher-order cal-
culations, or when including Bose and Fermi effects, calculations are inherently more difficult.
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Such calculations will not be considered here, and are more appropriate for a course dedicated
to many-body theory. However, even if one does not intend to ever perform such calculations, it
is very worthwhile to have an understanding of the fundamentals of perturbation theory shown
here:

• Perturbation theory is an expansion in the order of interactions.

• Calculations involve matrix elements of the type 〈p1, p2|V |p1, p2〉 (or perhaps with differ-
ent numbers of particles if interactions create or destroy quanta), which can be calculated
easily.

• Diagrams, such as the one shown in Fig. 7.1 allow one to separate contributions to lnZ
by whether they involve the interaction of 1 particle, 2 particles · · ·n particles in a “con-
nected” manner.

7.2 An Aside: A Brief Review of Creation and Destruction Operators

When phase space densities are low, the only matrix elements that matter are those connecting
an empty single-particle level to one with a singly-occupied level. For higher occupations, one
must worry about the more general case, 〈m|V |n〉, where m and n refer to the number of
particles in the level. Although them and n dependence could be nearly any function, in nearly
all cases it will follow the systematics of creation and destruction operators. The systematics
plays a central role in the study of condensates and lasers, or in lattice-gauge calculations.

Creation and destruction operators are built on the physics of a simple one-dimensional har-
monic oscillator:

H =
p2

2m
+

1

2
mω2x2. (7.21)

Here, the spring constant is k = mω2, where ω =
√
k/m is the angular frequency of the

oscillator. Creation and destruction operators are defined as:

a† =

√
mω

2~
x+ i

√
1

2~mω
p, a =

√
mω

2~
x− i

√
1

2~mω
p. (7.22)

With this definition,
[a, a†] = 1, H = ~ω(a†a+ 1/2). (7.23)

Here, a is the destruction operator while a† is the creation operator.

Now, we consider some eigenstate |m〉which has an energy εm,

H|m〉 = εm|m〉. (7.24)

The state a|m〉must then also be an eigenstate,

H(a|m〉) = ~ω
[
(a†a+ 1/2)

]
a|m〉 = ~ωa

[
a†a− 1/2

]
|m〉 = (εm − ~ω)(a|m〉). (7.25)

Thus, for any eigenstate, successive operations of the destruction operator will yield more eigen-
states with energies lowered by ~ω – unless there is some state |0〉 for which

a|0〉 = 0. (7.26)
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If we assume there is such a state, its energy must be

H|0〉 = ~ω(a†a+ 1/2)|0〉 = (~ω/2)|0〉. (7.27)

One could have also considered the state a†|m〉. Similarly, application of the commutation rela-
tions leads to fact that

H(a†|m〉) = (εm + ~ω)(a†|m〉). (7.28)

Thus, the eigen-states of the Hamiltonian are:

ε = (1/2, 3/2, 5/2 · · · )~ω. (7.29)

Thus, we have shown that the basis of eigenstates are the vacuum, plus some states (a†)m|0〉.
However, these states are not yet normalized. To normalize them, we calculate the norm by
applying the commutation operators

〈0|am(a†)m|0〉 = m〈0|am−1(a†)m−1|0〉 = m! . (7.30)

The normalized eigenstates are thus:

|n〉 =
1
√
n!

(a†)n|0〉 (7.31)

In quantum field theory, there are field operators for each point in space x. Each of these points
might contain 0, 1, 2 · · · particles. Whereas the Schrödinger equation involves wave functions,
ψ(x) and ψ∗(x), field operators, Ψ(x) and Ψ†(x), are actually creation and destruction opera-
tors,

[Ψ(x),Ψ†(x′)] = δ(x− x′). (7.32)

The fact that quantum field theories behave in this manner is one of the most profound aspects
of modern quantum theory. It is as if each point in space is its own harmonic oscillator. The
kinetic energy term then acts like a term coupling adjacent oscillators, so that the eigenstates of
the Hamiltonian are also eigenstates of momentum. One can then associate a harmonic oscillator
of frequency ~ω = εp for each value of the momentum p.

Example 7.2:

• Calculate 〈0|aaa†aa†a†|0〉
Commute all the creation operators to the right:

〈0|aaa†aa†a†|0〉 = 〈0|a3(a†)3|0〉 − 〈0|a2(a†)2|0〉 = 3!− 2! = 4.

• Calculate 〈n|a†a†a†a|m〉.
Commute the destruction operator to the left,

〈n|a†a†a†a|m〉 = 〈n|a(a†)3|m〉 − 3〈n|(a†)2|m〉

=
1

√
n!m!

{
〈0|a(n+1)(a†)m+3|0〉 − 3〈0|an(a†)m+2|0〉

}
= δn,m+2

1
√
n!m!

{(n+ 1)!− 3n!}

= δn,m+2(n− 2)
√
n(n− 1).
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• The wave function for the ground state of the harmonic oscillator is:

ψ0(x) =
1

(2πR2)1/2
e−x

2/4R2

, R = ~/(2mω).

Find ψ1(x), the wave function of the first excited state by operating a† on ψ0(x).
Here, simply use the fact that the creation operator is:

a† =

√
mω

2~
x− i

√
1

2~mω
(−i∂x).

Differentiating,

ψ1(x) =

√
2mω

~
xψ0(x) = (x/R)ψ0.

7.3 The Partition Function as a Path Integral

For interactions that defy perturbation theory, several non-perturbative methods are based on
the path-integral picture of the partition function:

Z =
∑
i

〈i|e−βH|i〉 =
∑

i1,i2,··· ,in

〈i1|e−δβH|i2〉〈i2|e−δβH|i3〉〈i3| · · · |in〉〈in|e−δβH|i1〉,

e−δβH ≈ 1− δβH (7.33)

Here, δβ = β/n, and completeness was used to insert the intermediate states. If n → ∞,
δβ → 0 and the exponential becomes 1−δβH , which is linear inH . The quantity is considered
to be a path integral because each set i1 · in can be considered as a quantum path.

In various forms of the nuclear shell model, a subset of all states is considered in the sum over
i. The quantity M = (1 − δβH) is treated as a matrix, and the path integral is simple the
trace of this matrix to the nth power. Because states in the trace are many-body states, even the
three-particle - three-hole excitations of a few single-particle levels can amount to millions of
many-body states. Nonetheless, such brute-force methods are often applied. The T = 0 limit is
reached by having β →∞ which requires many applications of M . In fact, this is related to as
the Lanczos method for finding the ground state of a matrix Hamiltonian.

An even more brute-force method for calculating the path integral is lattice gauge theory. In
lattice calculations, the states |i〉 refer to configurations of the relativistic quantum field operators
at each point in space. In order to make the calculations tenable, the continuum of space points
is divided up into a lattice. The finite steps in imaginary time, δβ, represent a discretization in a
fourth dimension.

One possibility for describing the states |i〉 would be to consider each point on the lattice as it’s
own harmonic oscillator basis, then the state iwould have n(ix, iy, iz) excitations at each lattice
point. However, this is not how lattice calculations are performed. Instead, the state i refers to
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a set of complex field values at each point, ηix,iy,iz , where η is a complex number describing the
state:

|~η〉 = exp
(
~η · ~a† − ~η∗ · ~a

)
|0〉 (7.34)

= e−|η|
2/2 exp

(
~η · ~a†

)
|0〉

Here,~a is short-hand for a1, a2 · · · where the components refer to different single-particle levels.
The last step above exploited the Campbell-Baker-Hausdorff lemma,

eA+B = eAeBe−[A,B]/2 (7.35)

The states |~η〉 are convenient because they are normalized eigenstates of the destruction opera-
tors. For instance,

~a|~η〉 = ~η|~η〉. (7.36)

In order to use this basis in the path-integral formulation, the states must satisfy completeness,
which in this case is (homework problem),

1

π

∫
dηrdηi|η〉〈η| = 1, (7.37)

where ηr and ηi are the real and imaginary parts of η. Thus, each step in imaginary time can be
considered a set of values of η, and the path can be considered as a path through these sets of
numbers.

Example 7.3:
The state |η〉 is not orthogonal to |η′〉. Find the overlap, 〈η′|η〉.
Expanding the exponentials in the bra,

〈η′|η〉 = e−|η
′|2/2〈0|e−η′∗a|η〉

= e−|η
′|2/2〈0|eη′∗η|η〉.

Expanding the ket and keeping only the first term, because the others don’t overlap with 〈0|,

〈η′|η〉 = exp{−|η′|2/2− |η|2/2 + η′∗η}

Because the kinetic terms in the Hamiltonians have gradients, the dominant paths are those
where η is smooth. Rather than randomly sampling all paths, lattice calculations use Metropolis
algorithms which consider small changes of the path, then keep or reject the new path based on
the relative statistical weight of the new and old paths.

In order to perform the summations in Eq. (7.33) one considers element of the type,

〈~ηn+1|e−δβH(~a†,~a)|~ηn〉 = 〈~ηn+1|e−δβH(~η∗n+1,~ηn)|~ηn〉, (7.38)

which assume that the Hamiltonian is normal ordered with all the creation operators pushed
to the left. One difficulty with these elements is that the creation and destruction operators are
evaluated for different η. To overcome this, one can use Eq. (7.34) to rewrite,

|~ηn〉 = e−[δ~η∗~η+~η∗δ~η]/2eδ~η·~a
†|~ηn+1〉 (where δη ≡ ηn − ηn+1), (7.39)
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into the the matrix element to obtain

〈~ηn+1|e−δβH|~ηn〉 = 〈~ηn+1|e−δβHe[δ~η∗·~η−~η∗·δ~η]/2|~ηn+1〉. (7.40)

Here, we have assumed δβ and δη are small. After referring to δ~η = ~̇ηδβ, one obtains the
relation,

〈~ηn+1|e−δβH|~ηn〉 = 〈~ηn+1|eδβ[~̇η∗η/2−~η∗~̇η/2−H]|~ηn〉. (7.41)

One can now rewrite the path integral in Eq. (7.33) as

Z =
1

πN

∏
i

{∫
d~pid~qi〈~pi, ~qi|eδβ[i~pi·~̇qi/2−i~̇pi·~qi/2−H(~pi,~qi)]|~pi, ~qi〉

}
, (7.42)

whereN is the number of points (Dimension of p times number of time steps) over which fields
are integrated. Here, ~p and ~q are the real and imaginary part of ~η (aside from a factor of

√
2),

η ≡
p+ iq
√

2
. (7.43)

Calculation of Z thus entails dividing β into an infinite number of steps δβ, then integrating
over all ~p and ~q for each step, with the boundary conditions, ~p(β) = ~p(0), ~q(β) = ~q(0). This is
a path integral and is often written as:

Z =
1

πN

∫ {∏
i

d~p(βi)d~q(βi)

}
exp

{∫ β

0

dτL
(
~̇p(τ ), ~̇q(τ ), ~p(τ ), ~q(τ )

)}
. (7.44)

Here, L = i~p · ~̇q −H is the Lagrangian, with the factor of i coming from the fact that the time
step is in imaginary time. We also note that integration by parts and the boundary conditions
that the path return to its original starting point made terms of the form (pq̇− ṗq)/2 equivalent
to pq̇.

Lattice gauge theory is useful for relativistic theories where the particle number is not a good
quantum number, and the η basis is as reasonable as any, and is especially useful for situations
where condensed fields play a dominant role, such as QCD. Whereas the method described
above applies only for bosonic fields (because the creation operators follow bosonic rules), the
method, after some contortions, can also be applied for fermions.

Quantum chromodynamics is a non-abelian relativistic field theory, which is very strongly inter-
acting and cannot be treated in perturbation theory. It is also characterized by condensed quark-
antiquark pairs and by a condensate of gluonic fields. At temperatures in the neighborhood of
170 MeV, the state of the system changes rather abruptly. Quarks no longer belong to well de-
fined color singlets (color deconfinement) and the background condensate of quark-antiquark
pairs melts (restoration of chiral symmetry). Lattice gauge calculation provide the only means
to “solve” such a strongly interacting theory. A large community is devoted to precisely such
calculations. These calculations involve large and sometimes very specialized computational
facilities. Calculations typically exceed 1020 floating point operations.
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7.4 Problems

1. Calculate the second-order virial coefficient to first order in perturbation theory for distin-
guishable particles of mass m at temperature T interacting through the two-body poten-
tial,

V (r) =

{
0 , r < a

V0/r
6 , r > a

2. Consider a gas of distinguishable particles of mass m at temperature T and chemical po-
tential µ in a volume V interacting through a mean field,

V = V0.

(a) Using Eq. (7.19) calculate the correction to lnZ to first order in perturbation theory.

(b) Calculate themth order correction.

(c) Sum all the corrections to see that

lnZ =
V

(2π~)3

∫
d3p e−(εp+V0−µ)/T .

3. Consider the state
|η〉 ≡ exp

(
ηa† − η∗a

)
|0〉,

where a† and a are creation/destruction operators, [a, a†] = 1.

(a) Show that |η〉 is an eigenstate of the destruction operator,

a|η〉 = η|η〉.

(b) Show that |η〉 obey the relations,

〈η′|η〉 = exp{η′∗η − [|η|2 + |η′|2]/2}.

(c) Show that the completeness relation is satisfied,

1

π

∫
dηrdηi 〈n1|η〉〈η|n2〉 = δn1,n2,

where |n〉 is a normalized state with n particles, |n〉 = (1/
√
n!)(a†)n|0〉.

4. Consider a Hamiltonian,

H = H0 + j(t)(a+ a†), H0 = ~ωa†a,

where j(t) is a real function.

(a) Show that
e−iH0t/~a = ae−iH0t/~eiωt.
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(b) Show that the state

|ψ(t)〉 ≡ e−iH0t/~ exp

{
−(i/~)

∫ t

−∞
dt′ j(t′)

[
e−iωt

′
a+ eiωt

′
a†
]}

is an eigenstate of the Hamiltonian, i.e., show

i~
∂

∂t
|ψ(t)〉 = H|ψ〉.

(c) Assuming that j(t) = 0 for t > t′, find an expression for η in terms of j such that
|ψ(t > t′)〉 is a coherent state,

|ψ(t)〉 = e−iH0t/~ exp
{
ηa† − η∗a

}
|0〉.
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8 Linear Response Theory

Life is simple. You get out what you put in. – Anonymous

8.1 Linear Response and Kubo Relations

Here, we consider the response of thermally equilibrated systems to small external forces, such
as an electro-magnetic field or velocity gradient. These external fields lead to changes in a variety
of quantities. For instance, an external field generates a current. The ratio of the two quantities,
in this case the conductivity, represents a fundamental property of matter. Examples are:

Stimulus Response Response/Stimulus
E field Current Conductivity
B field Magnetization Magnetic susceptibility

Velocity Gradient Stress-Energy tensor Viscosity
Density Gradient Particle Flow Diffusion Constant

Temperature Gradient Current Thermal Conductivity

These properties can be expressed in terms of correlations or fluctuations in the medium that
occur in the absence of the stimulus. For example, the conductivity is related to the current-
current correlation function in a system with no external field.

Deriving the connections between the driving field (the cause) and the response (effect) is the
heart of linear-response theory. A variety of relations, such as the Fluctuation Dissipation theorem,
Green-Kubo Relations all play a role, and one lesson to understand is that dissipation plays a
critical role in all these relations. This is not surprising – if there were no dissipation the electrons
in a metal would accelerate rather reaching a steady current. Our goals here are modest, as we
simply wish to derive an expression for the response of an observable 〈A〉, which is non-zero due
to a small external field F . We want to find χ = 〈A〉/F . More generally, one could determine
the time dependent generalized susceptibility χ(t),

〈A(t)〉 =

∫ t

−∞
dt′ χ(t− t′)F (t′), (8.1)

where the brackets 〈...〉 denote thermal averages. This would allow one to understand response
due to transient fields or to fields driven with particular frequencies. These broader considera-
tions would open the subject up to that of an entire course.

The goal, as stated above, is to express the response in terms of operators, or correlations of op-
erators, in a thermalized system in the absence of the external field. To begin, one must identify
how the external field interacts with the system. For small fields, we assume it connects linearly,
through a term V = FB, whereB is some operator. For instance, if F is an electric field, E(x),
the operator B(x) = −xρ(x), where ρ is the charge density. Because F is small, the correction
toA can be found in perturbation theory,

〈A(t)〉 = 〈
(

1−
i

~

∫ t

−∞
VI(t

′)dt′
)
A

(
1 +

i

~

∫ t

−∞
VI(t

′)dt′
)
〉, (8.2)

VI(t) = −F (t)B(t),

B(t) = e−iH0tBeiH0t, (8.3)
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and B is the operator in the Heisenberg representation. Because 〈A〉 = 0 (otherwise we could
consider δA), we then find

〈A〉 =
−i
~

∫ 0

−∞
dt 〈[A(0), B(t)]〉F (t). (8.4)

This expression is often referred to as a Kubo relation, or a Green-Kubo relation. If A is the
current density in the x direction, and F is the electric field, the conductivity is

σ =
−i
~

∫ 0

∞
dt′
∫
d3r′ 〈[jx(r = 0, t = 0),−xρ(r′, t′)]〉. (8.5)

The expression is typically modified through some Fourier gymnastics to get it in the form of a
current-current correlation. First insert a term (∂/∂t′)t′ into the integral, then integrate by parts
to find

σ =
−i
~

∫ 0

∞
dt′
∫
d3r′ 〈[jx(r = 0, t = 0),−xρ(r′, t′)]〉

(
∂

∂t′
t′
)

(8.6)

=
−i
~

∫ 0

∞
dt′ t′

∫
d3r′ 〈[jx(r = 0, t = 0), x

∂

∂t′
ρ(r′, t′)]〉.

Next, use the equation of continuity, ∂tρ = −∇ · j, and a second integration by parts to find

σ =
−i
~

∫ 0

∞
dt′ t′

∫
d3r′ x〈[jx(r = 0, t = 0),−∇ · j(r′, t′)]〉

= −
i

~

∫ 0

∞
dt′ t′

∫
d3r′ 〈[jx(r = 0, t = 0), jx(r

′, t′)]〉 (8.7)

The terms with jy and jz were discarded by symmetry arguments.

Eq (8.7) has nice aesthetics, but is difficult to grasp physically. If one were to consider the classical
limit, the current operators at different times would commute, but then ~ → 0, so one would
have zero divided by zero. Fortunately, the conductivity can be re-expressed in terms of anti-
commutators, and without dividing by ~. This requires analyticity arguments. For short hand,
we consider the expression,

σ =
−i
~

∫ ∞
−∞

dt tG(t), (8.8)

G(t) ≡ 〈J(t)J(0)〉,

J(t) =
1
√
V

∫
d3r jx(r, t).

Here, the volume is V , and we have made use of the fact that the commutator is an odd function
in t, which allows us to remove one term of the commutator by extending the integration over
all time.

Next, we can make use of properties of the thermal trace to derive symmetry relations for G(z)
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iβ

iβ/2

I0

I1 I2

I3

I4

Figure 8.1: The path integrals, I0 · · · I4, are illustrated above. Using symmetry and analyticity argu-
ments, relations between the various segments lead to Eq. (8.12) to show that the segment I0 = 0, which
then provides the connection between the Kubo commutator and anti-commutator version of the Kubo
relations.

in the complex plane,

〈J(0)J(iβ~/2 + z)〉 = Tr e−βHJeiH(iβ/2+z/~)Je−iH(iβ/2+z/~), (8.9)
= Tr eiH(iβ/2+z/~)Je−iH(iβ/2+z/~)e−βHJ

= Tr e−βHJeiH(iβ/2−z/~)Je−iH(iβ/2−z/~)

= 〈J(0)J(iβ/2− z/~)〉,
G(iβ~/2 + z) = G(iβ~/2− z).

Here, we have made use of cyclic properties of the trace. This expression allows us to see that
G(z) has an even reflection symmetry about the point iβ/2 in the complex plane. We consider
the integrals,

Ia =

∫
a

dz (z − iβ~/2)G(z). (8.10)

We consider four paths for the integral (illustrated in Fig. 8.1),

• I0, which goes from z = −∞ to∞ along the real axis.

• I1, which goes from z = −∞ to 0 along the real axis.

• I2, which goes from z = 0 to∞ along the real axis.

• I3, which goes from z = 0 to z = iβ~ along the imaginary axis.

• I4, which goes from z = iβ~ to z = iβ~ +∞, parallel to the real axis.

From analyticity and the reflection symmetry about z = iβ~/2, one can see the following con-
ditions,

I3 = 0, reflection symmetry, (8.11)
−I2 + I3 + I4 = 0, integrating analytic function about closed loop,

I4 = −I1, reflection symmetry.
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One can then see that

I0 = I1 + I2 (8.12)
= −I4 + I2

= −I3 = 0.

Thus, ∫ ∞
−∞

dt tG(t) = i
β~
2

∫ ∞
−∞

dt G(t), (8.13)

σ =
β

2V

∫ ∞
−∞

dt G(t)

=
β

2

∫ ∞
−∞

dt

∫
d3r 〈jx(0)jx(r, t)〉

=
β

2

∫ ∞
0

dt

∫
d3r 〈{jx(0), jx(r, t)}〉,

where the curly brackets denote anti-commutators. The division by ~ has vanished, and in the
classical limit the operators commute.

This last expression, Eq. (8.13), can then be compared to simple arguments for the conductivity.
Consider a gas of charged particles (q = e), of mass m at temperature T . For t = 0, the
current-current correlation function only has contributions between a particle and itself,

jx(r, t = 0) =
1

V

∑
i

e
pi,x/m

,
(8.14)

∫
d3r 〈jx(r = 0, t = 0)jx(r, t = 0)〉 =

e2

V

∑
i

p2
i,x

m2
,

= e2n
T

m
. (8.15)

Here, the density of particles is n, and the equipartition theorem has been used, 〈p2
x/2mT 〉 =

T/2. Now, assume the correlation decays with a relaxation time τR, which is likely approxi-
mately two mean collision times. This would give∫ ∞

0

dt

∫
d3r 〈jx(r = 0, t = 0)jx(r, t = 0)〉 = e2nτR

T

m
(8.16)

σ =
e2nτR

m

The factor of T was canceled by the factor of β in Eq. (8.13). The conductivity estimated from
the Kubo relation above can now be compared to that from a simple kinetic model. In that case,
the current density is

jx = en〈px/m〉, (8.17)

where the term in the brackets is the average velocity due to the acceleration during time τR,

〈px〉 = eEτR. (8.18)
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Inserting this into the expression for the current,

jx =
e2nτR

m
E, (8.19)

σ =
e2nτR

m
,

which matches the previous expression from the Kubo relation.

Kubo relations are powerful. They allow calculation of fundamental properties of matter from
microscopic pictures. Calculations can vary from sophisticated quantum treatments based on
advanced many-body theory, to the simple kinetic picture above.

8.2 Response at Non-Zero Frequency

In the previous subsection, the response was calculated for a constant field F , whereas often
applied fields are sinusoidal with frequency ω. The generated response has the same frequency.
The general Kubo relation, Eq. (8.4), shows that the general response of a quantity a to a field
F (t) that couples to an operator b throughHI(t) = −b(t)F (t), is

δ〈a(t = 0)〉 =

∫
dt′χab(t− t′)F (t′), (8.20)

χab(t) = 2iχ′′ab(t)Θ(t),

χ′′ab(t) =
1

2~
〈[a(t), b(0)]〉.

In frequency, the response then becomes

â(ω) = χab(ω)F (ω), (8.21)

χ̂ab(ω) =

∫
dt eiωtχab(t),

and the quantity of interest is χ̂ab(ω).

One can determine χ̂ab(ω) from χ̂′′ab(ω) using contour integration,

eiωtΘ(t) =
1

2πi

∫
eiω
′tdω′

ω′ − ω − iε
, (8.22)

χ̂ab(ω) =
1

π

∫
dω′dt

eiω
′tdω′

ω′ − ω − iε
χ′′(t)

=
1

π

∫
dω′

χ̂′′ab(ω
′)

ω′ − ω − iε
. (8.23)

Using 1/(x− iε) = πiδ(x) + P(1/x), one can express the integrals as

χ̂ab(ω) = χ̂′ab(ω) + iχ̂′′ab(ω), (8.24)

χ̂′ab(ω) ≡
1

π

∫
dω′ P

1

ω′ − ω
χ̂′′ab(ω

′).
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This is a Kramers Kronig relation, 2.

The symmetry properties of χ′′ab(t) and χ̂′′ab(ω) are important to understand.

χ′′ab(t) = −χ′′ba(t), (8.25)
= −[χ′′ab(t)]

∗, (8.26)
= −εaεbχ′′ab(−t), (8.27)

χ̂′′ab(ω) = εaεbχ̂
′′
ba(ω), (8.28)

= εaεb[χ̂
′′
ab(ω)]∗, (8.29)

= −εaεbχ̂′′ab(−ω), (8.30)

where εa and εb are each ±1 and represent the behavior of the operators under time reversal.
For instance, densities are even under time reversal, whereas currents and magnetizations are
odd. Depending on whether εaεb = ±1, χ̂′′ab is an even or odd function of ω, which means that
one need only consider the even or odd part of P/(ω′ − ω) in the expression for χ̂′(ω) above.
Thus,

χ̂′ab(ω) =

{
1
π

∫
dω′ P ω′

ω′2−ω2 χ̂
′′
ab(ω

′), εaεb = 1
1
π

∫
dω′ P ω

ω′2−ω2 χ̂
′′
ab(ω

′), εaεb = −1
(8.31)

Thus χ̂′ab(ω) is even when χ̂′′(ω) is odd, and is odd when χ̂′′(ω) is even. When χ̂′′ is real, so is
χ̂′ ,and when χ̂′′ is imaginary, so is χ̂′.

If εaεb = 1, both χ̂′(ω) and χ̂′′(ω) are real, with χ̂′(ω)ab being an even function, while χ̂′′ab(ω)
being odd. In this case, χ̂′ represents the response that is in phase with the driving force, and
χ̂′′ represents the out-of-phase response. If εaεb = −1, χ̂′′ is an even function and imaginary,
while χ̂′ is an odd function while also imaginary. Thus, when εaεb = −1 χ̂′ represents the
out-of-phase response and χ̂′′ represents the in-phase response.

Unfortunately, χ′′ab(t) is difficult to grasp physically. This is because it is a commutator, and in
the classical limit becomes zero. However, the response does not disappear in the classical limit,
because the commutator is divided by ~, which also goes to zero. Fortunately, one can relate the
commutator to either the anti-commutator,

Φab(t) ≡
1

2
〈{a(t), b(0)}〉, (8.32)

or to the simple correlator

Sab(t) ≡ 〈a(t)b(0)〉, (8.33)

χ′′ab(t) =
1

2~
(Sab(t)− Sba(−t)) ,

Φab(t) =
1

2
(Sab(t) + Sba(−t)) ,

through the fluctuation-dissipation theorem. Before progessing, we rewrite the relations above

2https://en.wikipedia.org/wiki/Kramers-Kronig_relations
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in frequency space,

χ̂′′ab(ω) =
1

2~

(
Ŝab(ω)− Sba(−ω)

)
, (8.34)

Φ̂(ω) =
1

2

(
Ŝab(ω) + Sba(−ω)

)
The fluctuation-dissipation theorem relates these quantities in frequency space. Deriving the
relation begins by exploiting the cyclic property of the trace,

Sab(t) = Tre−βHa(t)b(0) (8.35)
= Tre−βHe−iHt/~a(0)eiHt/~b(0)

= Tre−βHeiHt/~b(0)e−iHte−βHa(0)eβH

= Tre−βHb(−t)a(−i~β)

= Sba(−t+ iβ).

One can also use the fact that eτ∂tf(t) = f(t+ τ ) to rewrite the last line as

Sab(t) = ei~β∂tSba(−t). (8.36)

In Fourier space, ∂t becomes−iω in the transformation and

Ŝab(ω) = eβ~ωŜba(−ω). (8.37)

One can now insert these into the expressions for χ̂′′ and Φ̂ in Eq.s (8.34),

χ̂′′ab(ω) =
1

2~
Ŝab(ω)(1− e−β~ω), (8.38)

Φ̂ab(ω) =
1

2
Ŝab(ω)(1 + e−β~ω),

χ̂′′ab(ω) =
1

~
Φ̂ab(ω) tanh(β~ω/2).

These relations are referred to as the fluctuation dissipation relation. The quantities Φ(t) and
S(t) can be understood in terms of correlations of classical quantities by assuming the operators
commute. For χ′′, the classical limit is found by taking the lowest order expansion in ~. In that
limit,

χ̂′′ab(ω) ≈ βωŜab(ω), (8.39)

Φ̂ab(ω) ≈ Ŝab(ω). (8.40)

Example 8.1:
Express the electric conductivity in terms of the current-current correlation, Sjj(ω), for a field
oscillating with frequency ω:
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Here, to reduce the burden of subscripts, the currents and electric fields are implicitly assumed
to be in the x direction. First, we write the interaction,

HI(t) = −
∫
d3r xE(t)δρ(~r, t)

= −
∫

1

2π
dω′

∫
d3r xÊ(ω′)δρ(~r, t)

The evolution operator is

U(t) = 1−
i

~

∫ t

−∞
dt′HI(t

′) (8.41)

= 1−
i

~

∫
d3r x

∫
dω′

2π
Ê(ω′)

∫ t

−∞
dt′δρ(x, t′)e−iω

′t′ (8.42)

= 1−
i

~

∫
d3r x

∫
dω′

2π
Ê(ω′)

∫ t

−∞
dt′δρ(x, t′)

1

−iω′
∂t′(e

−iω′t′ − e−iω′t) (8.43)

= 1 +

∫
d3r x

∫
dω′

2π~ω′
Ê(ω′)

∫ t

−∞
dt′∂xj(x, t

′)(e−iω
′t′ − e−iω′t). (8.44)

The induced current density is then

〈δj(0, t)〉 =

∫
d3r

∫
dω′

2π~ω′
Ê(ω′)dt′(e−iω

′t′ − e−iω′t)Θ(t− t′)〈[δj(0, t)δj(x, t′)]〉

=

∫
dω′

2πω′
Ê(ω′)dt′(e−iω

′t′ − e−iω′t)χ′′JJ(t− t′)

χ′′JJ(t) =
1

~
Θ(t)〈[J(t), J(0)]〉,

J(t) =
1
√

Ω

∫
d3r j(~r, t),

where Ω is the volume. Performing more Fourier transforms,

〈δĵ(0, t)〉 =

∫
dω′

(2π)2ω′
E(ω′)dt′(e−iω

′t′ − e−iω′t)
∫
dω′′e−iω

′′(t−t′)χ̂′′JJ(ω′′),

=

∫
dω′

2πω′
E(ω′)

∫
dω′′e−iω

′′(t−t′)χ̂′′JJ(ω′′) ·
[
δ(ω′ − ω′′)e−iω′t − δ(ω′′)e−iω′t

]
=

∫
dω′

2πω′
E(ω′)e−iω

′t
[
χ̂′′JJ(ω′)− χ′JJ(0)

]
〈δĵ(ω)〉 =

E(ω)

ω

[
χ̂′′JJ(ω)− χ̂′′JJ(0)

]
.

The conductivity is then

σ̂(ω) =
χ̂′′JJ(ω)− χ̂′′JJ(0)

ω

=
ŜJJ(ω)

2~ω
(
1− e−β~ω

)
=

Φ̂JJ(ω)

2~ω
tanh(β~ω),
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where the last two expressions used the fluctuation-dissipation theorem, Eq. (8.38).

8.3 Problems

1. Assuming that current is carried by particles of charge e, show that the diffusion constant
and conductivity are related by

D =
σT

χ
.

where χ is the charge fluctuation.

χ =
1

V
〈(Q− Q̄)2〉 =

∂ρ

∂(µ/T )
.

The conductivity and diffusivity are defined by

~J = −D∇ρ,
~J = −σ ~E.

Hint: Assume the current responds to the electric potential the same as it would a chemical
potential,

Φ↔ µ.

2. Consider an interaction of the magnetic field with the magnetization densityM(r),

Hint = µ

∫
d3rM(r)B.

Find an expression for the magnetic susceptibility χ, defined by

〈M〉 = χB,

in terms of correlations of the magnetic field, i.e. 〈M(0)M(r, t)〉, and the temperature.

3. Show that in the limit where ω → 0, the conductivity σ(ω → 0) from the final example
matches that found in Eq. (8.13).

4. Consider that the equal-time correlation of the current density is from Eq. (8.14),∫
d3r 〈δJ(0, t)δJ(~r, t)〉 = e2n

T

m
.

Assume the classical limit, and assume that the correlation dies in time as∫
d3r 〈δj(0, t)δj(~r, 0)〉 =

∫
d3r 〈δj(0, t)δj(~r, 0)〉e−|t|/τ .

(a) Derive ŜJJ(ω).
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(b) What is σ̂(ω)?

(c) As ω → 0, what is the conductivity?

5. A magnetic field is applied is applied with frequency ω. Find the magnetic susceptibility
in the classical limit, χ̂M(ω), as a function of ω assuming that you know the susceptibility
in the zero frequency limit, χ̂M(ω → 0), and the exponential time for which correlations
decay, τ .
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