A train of initial mass M_{0} is moving at an initial speed of v_{0} along a frictionless track. As the train travels, it picks up passengers at a constant rate of p passengers per unit distance. Each passenger has a mass of m_{p}.
(a) Determine the train's speed as a function of the distance traveled x.
(b) Express the train's position as a function of time.
(c) Derive an expression for the train's speed as a function of time.

General Solution:

a) Total inelastic collision, initial momentum = final momentum:
$\rho_{i}=M_{0} v_{0} \quad \rho_{f}=M(x)(v(x))$
$\rho=\left(M_{0}+m_{p} p x\right) v(x)=M_{0} v_{0}$
$v(x)=\frac{M_{0}}{M_{0}+m_{p} p x} v_{0}$
b) To find Oliver's position as a function of time, we need to integrate the velocity function with respect to time:
$\frac{d x}{d t}=\frac{M_{0}}{M_{0}+m_{p} p x} v_{0}$
$M_{0} v_{0} t=\int_{0}^{x} d x^{\prime}\left(M_{0}+m_{p} p x^{\prime}\right)=M_{0} x+m_{p} p \frac{x^{2}}{2}$
$x(t)=\frac{-M_{0}+\sqrt{M_{0}{ }^{2}+2 m_{p} p M_{0} v_{0} t}}{m_{p} p}$
c) To find Oliver's position as a function of time, we need to take the derivative of the trains position as a function of time:
$v(t)=\frac{d x}{d t}=\frac{1}{m_{p} p} \frac{m_{p} p v_{0}}{\left(M_{0}{ }^{2}+2 m_{p} p M_{0} v_{0} t\right)^{1 / 2}}=\frac{M_{0} v_{0}}{\left(M_{0}{ }^{2}+2 m_{p} p M_{0} v_{0} t\right)^{1 / 2}}$

