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1 Dimensions, Scalars, Vectors and Tensors

1.1 Dimensions and Units

All physical quantities have dimension. For mechanics, the basic dimensions are mass, length
and time. One can also add electric charge for classical electrodynamics. All quantities can be
expressed in terms of these dimensions. For example, the dimension of velocity are distance/-
time, and the dimension of force is mass multiplied by length divided by time squared. All the
terms of any valid physical equation must have the same dimension. For example, if t, v x and
a are time, velocity, position and acceleration, the equation

x = vt + at (1.1)

is invalid because the last term has dimensions of velocity whereas the other term have dimen-
sions of distance. Angles are dimensionless. Thus x = vt cos θ is dimensionally valid.

If one were to expand an exponential function in a Taylor expansion,

ex = 1 + x +
x2

2
+

x3

3!
+ · · · , (1.2)

one immediately sees that x must be dimensionless. Otherwise one would be adding terms
with different dimensions. The same holds for sine or cosine functions. If a student were to
write the formula sin(vt + γ), where v and t are velocity and time, on an exam, they would be
immediately penalized because the argument of the sine function is not dimensionless.

Physical expressions must be dimensionally consistent, but consistency with units only comes
into play once the expressions are evaluated numerically. For example, if one has the expression
x = vt, and if velocity is meters per second and time is in seconds, then x must be expressed
in meters if the numerical values are to be accurately calculated. The calculation would also
work fine if the velocity were in miles per hour, but then time should be expressed in hours and
x would be expressed in miles. Thus, one should keep in mind the difference between units
and dimensions. Dimensions are mass, length, time, charge, length per time, etc., whereas ex-
amples of units are as meters, light years and kilograms. Once one considers problems with
more involved calculations, it is highly recommended to perform all algebraic manipulations
with symbols so that one can check dimensional consistency. This allows one to more easily
recognize and track down algebraic errors. Finally, we point out that although angles are di-
mensionless, they are not unitless. The Taylor expansion, sin θ = θ − θ3/6 + θ5/120 − · · · , is
valid only when θ is in radians. This is akin to saying that a count, e.g. a number of eggs, which
is dimensionless, might be expressed in terms of the number of dozens or the number of gross.

When an equation is dimensionally consistent, one can change the units, and the equation will
still work, because the change of units affects each term in the equation by the same factor, and
multiplying the entire equation by a constant factor does not change its validity.

1.2 Scalars, Vectors, Matrices and Tensors

A scalar is a quantity with a value that is independent of how one rotates the coordinate sys-
tem. For example, the three-dimensional displacement vector (x, y, z) is not a scalar because it
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changes under rotation. Neither is the velocity, v⃗ = (vx, vy, vz). Examples of scalars are mass,
the relative time between events, or the speed, s ≡ |v⃗|. A vector has magnitude and direction.
Under rotation, the magnitude stays the same but the direction changes. Scalars have no spatial
index, whereas a three-dimensional vector has 3 indices, e.g. the position r⃗ has components
r1, r2, r3, which might be referred to as x, y, z or for momentum might be px, py, pz. In addi-
tion to vectors and scalars, there are matrices, which have two indices. One also has objects with
3 or four indices. These are called tensors of rank n, where n is the number of indices. A matrix
is a rank-two tensor. The Levi-Civita symbol, ϵijk used for cross products, is a rank-three tensor.

There are several categories of changes of coordinate system. The observer can translate the
origin, might move with a different velocity, or might rotate their coordinate axes. For instance,
a particle’s position vector changes when the origin is translated, but its velocity does not. When
you study relativity you will find that quantities you thought of as scalars, such as time or electric
potential, are actually parts of four-dimensional vectors and that changes of the velocity of the
reference frame act in a similar way to rotations, but relativistic effects are small when velocities
are small compared to the speed of light, and in that limit time does not change under changes
of the velocity of the reference frame. Thus, for our purposes, time is considered a scalar.

Given the number of spatial indices, or rank, one knows exactly how a quantity transforms un-
der rotation. Thus, the velocity vector, the displacement vector, or the angular momentum vector
all transform identically. I.e. under a rotation around the z−axis by an angle ϕ, the components
of a vector in the primed coordinate system are re-expressed in terms of the components in the
previous, un-primed basis,

x′ = x cosϕ + y sinϕ, (1.3)
y′ = y cosϕ − x sinϕ,

v′
x = vx cosϕ + vy sinϕ,

v′
y = vy cosϕ − vx sinϕ,

...

Scalars are unchanged by rotation. Vectors are rotated by multiplying by a matrix, and for a
vector r⃗, the transformed vector is

r′
i =

∑
j

Rijrj, (1.4)

where Rij is the rotation matrix. For a second rank tensor, Aij ,

A′
iℓ =

∑
jk

RijAjkR
−1
kℓ (1.5)

Unit Vectors

Also known as basis vectors, unit vectors point in the direction of the coordinate axes, have unit
norm, and are orthogonal to one another. Sometimes this is referred to as an orthonormal basis,

êi · êj = δij =

 1 0 0
0 1 0
0 0 1

 . (1.6)
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Here, δij is unity when i = j and is zero otherwise. It is known as the Kronecker delta. This
is called the unit matrix, because you can multiply it with any other matrix and not change the
matrix. The “dot” denotes the dot product, A⃗ · B⃗ = A1B1 +A2B2 +A3B3 = |A||B| cos θAB.
Sometimes unit vectors are labeled x̂, ŷ and ẑ. Vectors can be decomposed in terms of unit
vectors,

r⃗ = r1ê1 + r2ê2 + r3ê3. (1.7)

The vector components r1, r2 and r3 might be called x, y and z for a displacement or vx, vy and
vz for a velocity.

Rotations and Coordinate Transformation

Here, we use rotations as an example of matrices and their operations. One can consider a
different orthonormal basis ê′

1, ê′
2 and ê′

3. The same vector r⃗ mentioned above can also be
expressed in the new basis,

r⃗ = r′
1ê

′
1 + r′

2ê
′
2 + r′

3ê
′
3. (1.8)

Even though it is the same vector, the components have changed as r⃗ is being expressed in a
new coordinate system. Each new unit vector ê′

i can be expressed as a linear sum of the previous
vectors,

ê′
i =

∑
j

Uij êj, (1.9)

and the matrix U can be found by taking the dot product of both sides with êk,

êk · ê′
i =

∑
j

Uij êk · êj

=
∑
j

Uijδjk = Uik. (1.10)

Thus, the rotation matrix has components Uij that are equal to the cosine of the angle between
new unit vector ê′

i and the old unit vector êj .

U =

 ê′
1 · ê1 ê′

1 · ê2 ê′
1 · ê3

ê′
2 · ê1 ê′

2 · ê2 ê′
2 · ê3

ê′
3 · ê1 ê′

3 · ê2 ê′
3 · ê3

 , Uij = ê′
i · êj = cos θij. (1.11)

Note that the matrix is not symmetric, Uij ̸= Uji. One can also look at the inverse transforma-
tion, by switching the primed and unprimed coordinates,

êi =
∑
j

U−1
ij ê′

j, (1.12)

U−1
ij = êi · ê′

j = Uji.

The definition of transpose of a matrix, M t
ij = Mji, allows one to state this as

U−1 = U t. (1.13)
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A matrix obeying Eq. (1.13) defines what is known as a unitary, or orthogonal, transformation.

The matrix U can be used to transform any vector to the new basis. Consider a vector

r⃗ = r1ê1 + r2ê2 + r3ê3 =
∑
i

riêi (1.14)

= r′
1ê

′
1 + r′

2ê
′
2 + r′

3ê
′
3 =

∑
i

r′
iê

′
i.

This is the same vector expressed as a sum over two different sets of basis vectors. The coef-
ficients ri and r′

i represent components of the same vector. The relation between them can be
found by taking the dot product of each side with one of the unit vectors, êi, which gives

ri = êi · r⃗ =
∑
j

êi · ê′
j r

′
j. (1.15)

Using Eq. (1.12) one can see that the transformation of r can be also written in terms of U ,

ri =
∑
j

U−1
ij r′

j. (1.16)

Thus, the matrix that transforms the coordinates of the unit vectors, Eq. (1.12) is the same one
that transforms the coordinates of a vector, Eq. (1.16).

Example 1.1: Rotation from Unit Vectors
Find the rotation matrix U for finding the components in the primed coordinate system given
from those in the unprimed system, given that the unit vectors in the new system are found
by rotating the coordinate system by and angle ϕ about the z axis.
Solution:
In this case

ê′
1 = cosϕê1 − sinϕê2,

ê′
2 = sinϕê1 + cosϕê2,

ê′
3 = ê3.

By inspecting Eq. (1.10),

U =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 .

Under a unitary transformation U (or basis transformation) scalars are unchanged, whereas
vectors r⃗ and matrices M change as

r′
i =

∑
j

Uij rj, (1.17)

M ′
ij =

∑
km

UikMkmU−1
mj .

4
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Note that all vectors, e.g. momentum, displacement, velocity, transform according to the same
rotation matrix.

Physical quantities with no spatial indices are scalars (or pseudoscalars if they depend on right-
handed vs. left-handed coordinate systems), and are unchanged by unitary transformations.
This includes quantities like the trace of a matrix – the matrix itself had indices but none remain
after performing the trace.

TrM ≡
∑
i

Mii. (1.18)

Because there are no remaining indices, one expects it to be a scalar. Indeed one can see this,

TrM ′ =
∑
ijm

UijMjmU−1
mi (1.19)

=
∑
ijm

MjmU−1
miUij

=
∑
mj

Mjmδmj

=
∑
j

Mjj = TrM.

A similar example is the determinant of a matrix, which is also a scalar.

Vector and Matrix Operations

• Scalar Product (or dot product): For vectors A⃗ and B⃗,

A⃗ · B⃗ = AiBi = |A||B| cos θAB,

|A| ≡
√

A⃗ · A⃗.

Here, and going forward, the notes will follow the convention that the summation sign is
inferred any time there are repeated indices. For example,

AiBi =
∑

AiBi = A⃗ · B⃗. (1.20)

• Multiplying a matrix C times a vector A⃗:

(CA)i = CijAj.

For the ith element one takes the scalar product of the ith row of C with the vector A⃗.

• Mutiplying matrices C and D:

(CD)ij = CikDkj,

This means the one obtains the ij element by taking the scalar product of the ith of C with
the jth column of D.

5
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• Vector Product (or cross product) of vectors A⃗ and B⃗:

C⃗ = A⃗ × B⃗,

Ci = ϵijkAjBk.

Here ϵ is the third-rank anti-symmetric tensor, also known as the Levi-Civita symbol. It
is ±1 only if all three indices are different, and is zero otherwise. The choice of ±1 de-
pends on whether the indices are an even or odd permutation of the original symbols. The
permutation xyz or 123 is considered to be +1. For the 27 elements,

ϵijk = −ϵikj = −ϵjik = −ϵkji (1.21)
ϵ123 = ϵ231 = ϵ312 = 1,

ϵ213 = ϵ132 = ϵ321 = −1,

ϵiij = ϵiji = ϵjii = 0.

You used cross products extensively when studying magnetic fields. Because the matrix is
anti-symmetric, switching the x and y axes (or any two axes) flips the sign. If the coordi-
nate system is right-handed, meaning the xyz axes satisfy x̂ × ŷ = ẑ, if you point along
the x axis with your extended right index finger, the y axis with your contracted middle
finger and the z axis with your extended thumb. Switching to a left-handed system flips
the sign of the vector C⃗ = A⃗ × B⃗. Note that A⃗ × B⃗ = −B⃗ × A⃗. The vector C⃗ is
perpendicular to both A⃗ and B⃗ and the magnitude of C⃗ is given by

|C| = |A||B| sin θAB.

Vectors obtained by the cross product of two real vectors are called pseudo-vectors because
the assignment of their direction can be arbitrarily flipped by defining the Levi-Civita sym-
bol to be based on left-handed rules, i.e. one could choose ϵ123 = −1, ϵ132 = 1 · · · .
Examples are the magnetic field and angular momentum. If the direction of a real vec-
tor prefers the right-handed over the left-handed direction, that constitutes a violation of
parity. For instance, one can polarize the spins (angular momentum) of nuclei with a mag-
netic field so that the spins preferentially point along the direction of the magnetic field.
This does not violate parity because both are pseudo-vectors. Now assume these polarized
nuclei decay and that electrons are one of the products. If these electrons prefer to exit
the decay parallel vs. antiparallel to the polarizing magnetic field, this constitutes parity
violation because the direction of the outgoing electron momenta are a real vector. This
is precisely what is observed in weak decays, as weak decays violate parity. The Levi-
Civita symbol has a host of interesting properties, a nice summary of which can be found
at https://en.wikipedia.org/wiki/Levi-Civita_symbol#.

• Differentiation of a vector with respect to a scalar gives a vector: For example, the acceler-
ation is dv⃗/dt:

(dv⃗/dt)i =
dvi

dt
.

• Angular velocity is a pseudo vector: Choose the vector ω⃗ so that the motion is like your fin-
gers wrapping around your thumb on your right hand with ω⃗ pointing along your thumb.
The magnitude is d|ϕ|/dt.

6
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• Gradient operator ∇ is a vector: This is the derivative ∂/∂x, ∂/∂y and ∂/∂z, where ∂x

means ∂/∂x. For taking the gradient of a scalar Φ,

grad Φ : (∇Φ(x, y, z, t))i = ∂/∂riΦ(r⃗, t) = ∂iΦ(r⃗, t).

For taking the dot product of the gradient with a vector, sometimes called a divergence,

divA⃗ : ∇ · A⃗ = ∂iAi.

For taking the vector product with another vector, sometimes called curl, ∇ × A⃗,

curl A⃗ : (∇ × A⃗)i = ϵijk∂jAk(r⃗, t).

• The Laplacian is referred to as ∇2 is a scalar and is defined as

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

It should be emphasized that one NEVER adds two physical quantities with different num-
ber of components. For example, one never adds time plus the x−component of the distance.
However, once indices are summed over, those indices disappear and the resulting quantity
transforms like an object with the remaining indices. For example, angular momentum can be
expressed as Liϵijkrjpk, where sums over j and k are inferred. Thus, angular momentum trans-
forms under rotation like any other vector. An example of an invalid equation is

|v⃗|2t2 = xy. (1.22)

Dimensionally, this is fine, but the l.h.s. transforms as a scalar an the r.h.s. transforms as part of a
second-rank tensor. If the opposite sides of an equation transformed differently under a rotation,
that would infer that the equation’s validity would rest on the coordinate system chosen by the
observer.

Some Identities

Here we simply state these, but you may wish to prove a few. They are useful for this class and
will be essential when you study E&M.

A⃗ · (B⃗ × C⃗) = B⃗ · (C⃗ × A⃗) = C⃗ · (A⃗ × B⃗) (1.23)

A⃗ × (B⃗ × C⃗) = (A⃗ · C⃗)B⃗ − (A⃗ · B⃗)C⃗

(A⃗ × B⃗) · (C⃗ × D⃗) = (A⃗ · C⃗)(B⃗ · D⃗) − (A⃗ · D⃗)(B⃗ · C⃗)

Example 1.2: Minima or Maxima in Higher Dimensions
The height of a hill is given by the formula

z(x, y) = 2xy − 3x2 − 4y2 − 18x + 28y + 12.

7
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Here z is the height in meters and x and y are the east-west and north-south coordinates. Find
the position x, y where the hill is the highest, and give its height.
Solution: The maxima or minima, or inflection points, are given when ∂xz = 0 and ∂yz = 0.

∂xz(x, y) = 2y − 6x − 18 = 0,

∂yz(x, y) = 2x − 8y + 28 = 0.

Solving for two equations and two unknowns gives one solution x = −2, y = 3. This then
gives z = 72. Although this procedure could have given a minimum or an inflection point
you can look at the form for z and see that for x = y = 0 the height is lower, therefore it is
not a minimum. You can also look and see that the quadratic contributions are negative so the
height falls off to −∞ far away in any direction. Thus, there must be a maximum, and this
must be it. Deciding between maximum or minimum or inflection point for a general problem
would involve looking at the matrix ∂i∂jz at the specific point, then finding the eigenvalues of
the matrix and seeing whether they were both positive (minimum) both negative (maximum)
or one positive and one negative (saddle point).

Gauss’s Theorem and Stokes’s Theorem

For an integral over a volume V confined by a surface S, Gauss’s theorem gives∫
V

dv ∇ · A⃗ =

∫
S

dS⃗ · A⃗.

For a closed path C which carves out some area S,∫
C

dℓ⃗ · A⃗ =

∫
S

ds⃗ · (∇ × A⃗)

Stoke’s law can be understood by considering a small rectangle, −∆x < x < ∆x, −∆y <
y < ∆y. The path integral around the edges is∫

C

dℓ⃗ · A⃗ = 2∆y[Ay(∆x, 0) − Ay(−∆x, 0)] − 2∆x[Ax(0,∆y) − Ax(0,−∆y)](1.24)

= 4∆x∆y

{
Ay(∆x, 0) − Ay(−∆x, 0)

2∆x
−

Ax(0,∆y) − Ax(0,−∆y)

2∆y

}
= 4∆x∆y

{
∂Ay

∂x
−

∂Ax

∂y

}
= ∆S · ∇ × A⃗. (1.25)

Here ∆S is the area of the surface element.

Some Notation

From here on in, we may use bold face to denote vectors, e.g. v instead of v⃗. We also might
use dots over quantities to represent time derivatives, e.g. v̇ = dv/dt. As mentioned above,
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repeated indices infer sums, e.g.,

uivi =
∑
i

uivi = u⃗ · v⃗, (1.26)

uiAijvj =
∑
ij

uiAijvj,

Absolute values of vectors are short hand for

|A⃗| =
√

A2
i . (1.27)

1.3 Exercises

1. All physicists must become comfortable with thinking of oscillatory and wave mechanics
in terms of expressions that include the form eiωt.

(a) Perform Taylor expansions in powers of ωt of the functions cosωt and sinωt.

(b) Perform a Taylor expansion of eiωt.

(c) Using parts (a) and (b) show that eiωt = cosωt + i sinωt.

(d) Show that ln(−1) = iπ.

2. One of the many uses of the scalar product is to find the angle between two given vectors.
Find the angle between the vectors b⃗ = (1, 2, 4) and c⃗ = (4, 2, 1) by evaluating their
scalar product.

3. Use the product rule to show that

d

dt
(r⃗ · s⃗) =

dr⃗

dt
· s⃗ + r⃗ ·

ds⃗

dt
.

4. Multiply the rotation matrix in Example 1.1 by its transpose to show that the matrix is
unitary or orthogonal, i.e. you get the unit matrix.

5. Find the matrix for rotating a coordinate system by 90 degrees about the x axis.

6. Consider a parity transformation which reflects about the x = 0 plane. Find the matrix that
performs the transformation. Find the matrix that performs the inverse transformation.

7. Show that the scalar product of two vectors is unchanged if both undergo the same rota-
tion. Use the fact that the rotation matrix is unitary, Uab = U−1

ba .

8. Show that the product of two unitary matrices is a unitary matrix.

9. Show that ∑
k

ϵijkϵklm = δilδjm − δimδjl.

9
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10. Consider the function z = 3x2 − 4y2 + 12xy − 6x + 24. Find any maxima or minima
and determine whether it is a maximum or a minimum or an inflection point.

11. Consider a cubic volume V = L3 defined by 0 < x < L, 0 < y < L and 0 < z < L.
Consider a vector A⃗ that depends arbitrarily on x, y, z. Show how Gauss’s law,∫

V

dv∇ · A⃗ =

∫
S

dS⃗ · A⃗,

is satisfied by direct integration. I.e., you should use the fact that
∫ b

a
dx (d/dx)f(x) =

f(b) − f(a).

12. A real n−dimensional symmetric matrix λ can always be diagonalized by a unitary trans-
formation, i.e. there exists some unitary matrix U such that,

UijλjkU
−1
km = λ̃im =


λ̃11 0 · · · 0

0 λ̃22 · · · 0
... . . . ...
0 · · · · · · λ̃nn

 . (1.28)

The values λ̃ii are referred to as eigenvalues. The set of n eigenvalues are unique, but their
ordering is not – there exists a unitary transformation that permutes the indices.

Consider a function f(x1, · · · , xn) that has the property,

∂if(x⃗)|x⃗=0 = 0, (1.29)

for all i. Show that if this function is a minimum, and not a maximum or an inflection
point, that the n eigenvalues of the matrix

λij ≡ ∂i∂jf(x⃗)|x⃗=0 , (1.30)

must be positive.

13. (a) For the unitary matrix U that diagonalizes λ as shown in the previous problem. Show
that each row of the unitary matrix represents an orthogonal unit vector by using the
definition of a unitary matrix.

(b) Show that the vector

x
(k)
i ≡ Uki = (Uk1, Uk2, · · · , Ukn), (1.31)

has the property that

λijx
(k)
j = λ̃kkx

(k)
i . (1.32)

These vectors are known as eigenvectors, as they have the property that when multi-
plied by λ the resulting vector is proportional ( same direction) as the original vector.
Because one can transform to a basis, using U , where λ is diagonalized, in the new
basis the eigenvectors are simply the unit vectors.

10
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14. Which of these equations might be valid? Base your response solely on whether whether
both sides of the equation are consistent dimensionally (center column) or rotationally
(right-hand column). Here, F, q, v, B, L, r, t, p, E, a refer to force, charge, velocity, mag-
netic field, angular momentum, position, time, momentum and energy, respectively.

expression dimensionally rotationally
Fi = qϵijkvjBk (same as F⃗ = qv⃗ × B⃗)

F⃗ = r⃗ · L⃗/r2

ri = vit +
t2

2
ϵijkak

E = r⃗ · (p⃗ × R⃗)

11
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2 Newton’s Laws

In this chapter we mainly consider the motion of a single particle moving under the influence of
some set of forces. For Sec.s 2.1-2.3 we consider problems where the force does not depend on
the position. In that case Newton’s law, m ˙⃗v = F⃗ (v⃗), is a first-order differential equation and
one solves for v⃗(t), then moves on to integrate v⃗ to get the position. In section 2.4 we consider
the case where the force depends on the position and we show how to use energy conservation to
derive trajectories, e.g. x(t), though as shown in Sec. 2.5, this may require a numerical solution.
The role of momentum conservation in solving certain classes of problems is presented in Sec.
2.7 and the role of angular momentum is shown in Sec. 2.8.

2.1 Air Resistance in One Dimension

The force on a projectile due to air resistance scales mainly as the square of the velocity. This is in
contrast to many problems chosen for textbooks, where it is linear in the velocity. The choice of
a linear dependence is motivated by mathematical simplicity (it keeps the differential equation
linear) rather than by physics. One can see that the force should be quadratic in velocity by
considering the momentum imparted on the air molecules. If an object sweeps through a volume
dV of air in time dt, the momentum imparted on the air is

dP = ρmdV v, (2.1)

where v is the velocity of the object and ρm is the mass density of the air. If the molecules bounce
back as opposed to simply move with the velocity of the object you would double the size of the
term. The opposite value of the momentum is imparted onto the object itself. Geometrically, the
differential volume is

dV = Avdt, (2.2)

where A is the cross-sectional area and vdt is the distance the object moved in time dt. Plugging
this into the expression above,

dP

dt
= −ρmAv2. (2.3)

This is the force felt by the particle, and is opposite to its direction of motion. Now, because air
doesn’t stop when it hits an object, but flows around the best it can, the actual force is reduced
by a dimensionless factor cD, called the drag coefficient.

Fdrag = −cDρmAv2, (2.4)

and the acceleration is

dv

dt
= −

cDρmA

m
v2. (2.5)

12
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For a particle with initial velocity v0, one can separate the dt to one side of the equation, and
move everything with vs to the other side of Eq. (2.5), then integrate,

dv

v2
= −Bdt, B ≡

cDρmA

m
. (2.6)∫ vf

v0

dv

v2
= −B

∫ tf

t0

dt = −Btf ,(
1

v0

−
1

vf

)
= −B(tf − t0),

v = [1/v0 + B(t − t0)]
−1 .

We dropped the subscript f , i.e. tf → t and vf = v. One can see that v(t = t0) = v0, and that
v(t = ∞) = 0, as expected because the drag force should ultimately stop an object unless there
is an additional force such as gravity.

Example 2.1: Dropped Ball
Consider a ball dropped from rest. Let B = cDρmA/m represent the effect of the drag force
as above.

1. Solve for the terminal velocity Solution: This is where the acceleration is zero. The
equations of motion are

dv

dt
= −g + Bv2,

with the initial velocity set to zero. Because the motion is downward, the drag force is
positive. The terminal velocity is that for which the acceleration is zero,

vt =
√

g/B.

2. Find the velocity as a function of time. Solution: Integrate as above,

−Bdt =
dv

(g/B) − v2
,

−Bt =
1

vt

∫ v/vt

0

dx
1

1 − x2
=

1

vt

tanh−1(v/vt),

v = −vt tanh(Bvtt) = −vt tanh(gt/vt).

For small arguments tanh(x) ≈ x and for large arguments, tanh(x) ≈ 1,

v(t → 0) = −gt, v(t → ∞) = vt,

as expected. In addition to dimensional analysis, such tests provide useful checks for
answers.

For many systems, e.g. an automobile, there are multiple sources of resistance. In addition to
wind resistance, where the force is proportional to v2, there are dissipative effects of the tires on
the pavement, and in the axel and drive train. These other forces can have components that scale

13



PHY 321 2 NEWTON’S LAWS

proportional to v, and components that are independent of v. Those independent of v, e.g. the
usual f = µKN frictional force you consider in Physics I, only set in once the object is actually
moving. As speeds become higher, the v2 components begin to dominate relative to the others.
For automobiles at freeway speeds, the v2 terms are largely responsible for the loss of efficiency.
To travel a distance L at fixed speed v, the energy/work required to overcome the dissipative
forces are fL, which for a force of the form f = αvn becomes

W =

∫
dx f = αvnL. (2.7)

For n = 0 the work is independent of speed, but for the wind resistance, where n = 2, slowing
down is essential if one wishes to reduce fuel consumption. It is also important to consider that
engines are designed to be most efficient at a chosen range of power output. Thus, some cars
will get better mileage at higher speeds (They perform better at 50 mph than at 5 mph) despite
the considerations mentioned above.

The discussion above considered the work, or energy expended, for travling a specific distance.
If one were to consider the power, which would the work per time, the dependence on v, would
strengthen. Dividing the work by the time traveled gives the expression for the power, P = F⃗ ·v⃗,
which would scale as αvn+1. Thus, if one considered only wind resistance, with the force rising
proportional to v2, a bicyclist would require expend four times the energy to traverse a given
distance if she doubled her speed, but would require eight times the power.

2.2 Projectile Motion

As an example of Newton’s Laws we consider projectile motion with a drag force. Even though
air resistance is largely proportional to the square of the velocity, we will consider the drag force
to be linear to the velocity, F⃗ = −mγv⃗, for the purposes of this exercise. The acceleration,
a⃗ = F⃗ /m, becomes

dvx

dt
= −γvx, (2.8)

dvy

dt
= −γvy − g,

and γ has dimensions of inverse time.

We will go over two different ways to solve this equation: first by direct integration, and sec-
ondly as a differential equation. To solve the equations by direct integration, one simply multi-
plies both sides of the equations above by dt, then divide by the appropriate factors so that the
vs are all on one side of the equation and the dt is on the other. For the x motion one finds an

14
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easily integrable equation,

dvx

vx

= −γdt, (2.9)∫ vfx

v0x

dvx

vx

= −γ

∫ tf

0

dt,

ln

(
vfx

v0x

)
= −γtf ,

vfx = v0xe
−γt.

Here, we leave the subscript off the final time in the last expression. This is very much the result
you would have written down by inspection. For the y-component of the velocity,

dvy

vy + g/γ
= −γdt (2.10)

ln

(
vfy + g/γ

v0y + g/γ

)
= −γtf ,

vfy = −
g

γ
+

(
v0y +

g

γ

)
e−γt.

The reason the drag force was chosen proportional to v, was not to be realistic, but to make it
simple to consider the x and y components separately. Whereas vx starts at some value and
decays exponentially to zero, vy decays exponentially to the terminal velocity, vt = −g/γ.

Although this direct integration is simpler than the method we invoke below, the method below
will come in useful for some slightly more difficult differential equations in the future. The
differential equation for vx in Eq. (2.8) is straight-forward to solve. Because it is first order there
is one arbitrary constant, A, and by inspection the solution is

vx = Ae−γt. (2.11)

The arbitrary constants for equations of motion are usually determined by the initial conditions,
or more generally, by boundary conditions. By inspection A = v0x, the initial x component of
the velocity.

The differential equation for vy is a bit more complicated due to the presence of g. Differential
equations where all the terms are linearly proportional to a function, in this case vy, or to deriva-
tives of the function, e.g., vy, dvy/dt, d2vy/dt

2 · · · , are called linear differential equations. If
there are terms proportional to v2, as would happen if the drag force were proportional to the
square of the velocity, the differential equation is not longer linear. Because this expression has
only one derivative in v it is a first-order linear differential equation. If a term were added pro-
portional to d2v/dt2 it would be a second-order differential equation. In this case we have a
term completely independent of v, the gravitational acceleration g, and the usual strategy is to
first rewrite the equation with all the linear terms on one side of the equal sign,

dvy

dt
+ γvy = −g. (2.12)
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Now, the solution to the equation can be broken into two parts. Because this is a first-order
differential equation we know that there will be one arbitrary constant. Physically, the arbitrary
constant will be determined by setting the initial velocity, though it could be determined by set-
ting the velocity at any given time. Like most differential equations, solutions are not “solved”.
Instead, one guesses at a form, then shows the guess is correct. For these types of equations,
one first tries to find a single solution, i.e. one with no arbitrary constants. This is called the
particular solution, yp(t), though it should really be called “a” particular solution because there
are an infinite number of such solutions. One then finds a solution to the homogenous equation,
which is the equation with zero on the right-hand side,

dvy,h

dt
+ γvy,h = 0. (2.13)

Homogenous solutions will have arbitrary constants.

The particular solution will solve the same equation as the original general equation, Eq. (2.12),

dvy,p

dt
+ γvy,p = −g. (2.14)

However, we needn’t find one with arbitrary constants. Hence, it is called a “particular” solu-
tion.

The sum of the two,
vy = vy,p + vy,h, (2.15)

is a solution of the total equation because of the linear nature of the differential equation. One
has now found a general solution encompassing all solutions, because it both satisfies the general
equation (like the particular solution), and has an arbitrary constant that can be adjusted to fit
any initial condition (like the homogneous solution). If the equation were not linear, e.g if there
were a term such as v2

y or vyv̇y, this technique would not work.

Returning to the example above, the homogenous solution is the same as that for vx, because
there was no gravitational acceleration in that case,

vy,h = Be−γt. (2.16)

In this case a particular solution is one with constant velocity,

vy,p = −g/γ. (2.17)

Note that this is the terminal velocity of a particle falling from a great height. The general solu-
tion is thus,

vy = Be−γt − g/γ, (2.18)

and one can find B from the initial velocity,

v0y = B − g/γ, B = v0y + g/γ. (2.19)

Plugging in the expression for B into Eq. (2.18) gives the y motion given the initial velocity,

vy = (v0y + g/γ)e−γt − g/γ. (2.20)
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It is easy to see that this solution has vy = v0y when t = 0 and vy = −g/γ when t → ∞.

One can also integrate the two equations to find the coordinates x and y as functions of t,

x =

∫ t

0

dt′ vx(t
′) =

v0x

γ

(
1 − e−γt

)
, (2.21)

y =

∫ t

0

dt′ vy(t
′) = −

gt

γ
+

v0y + g/γ

γ

(
1 − e−γt

)
.

If the question was to find the position at a time t, we would be finished. However, the more
common goal in a projectile equation problem is to find the range, i.e. the distance x at which
y returns to zero. For the case without a drag force this was much simpler. The solution for
the y coordinate would have been y = v0yt − gt2/2. One would solve for t to make y = 0,
which would be t = 2v0y/g, then plug that value for t into x = v0xt to find x = 2v0xv0y/g =
v0 sin(2θ0)/g. One follows the same steps here, except that the expression for y(t) is more
complicated. Searching for the time where y = 0, Eq. (2.21) gives

0 = −
gt

γ
+

v0y + g/γ

γ

(
1 − e−γt

)
. (2.22)

This cannot be inverted into a simple expression t = · · · . Such expressions are known as
“transcendental equations”, and are not the rare instance, but are the norm. In the days before
computers, one might plot the right-hand side of Eq. (2.22) graphically as a function of time,
then find the point where it crosses zero.

Now, the most common way to solve for an equation of type Eq. (2.22) would be to apply
Newton’s method numerically. This involves the following algorithm for finding solutions of
some equation F (t) = 0, where F (t) is some function of t, not necessarily the force.

1. First guess a value for the time, tguess.

2. Calculate F and its derivative, F (tguess) and F ′(tguess).

3. Unless you guessed perfectly, F ̸= 0, and assuming that ∆F ≈ F ′∆t, one would choose

4. ∆t = −F (tguess)/F
′(tguess).

5. Now repeat step 1, but with tguess → tguess + ∆t.

If the F (t) were perfectly linear in t, one would find t in one step. Instead, one typically finds
a value of t that is closer to the final answer than tguess. One breaks the loop once one finds F
within some acceptable tolerance of zero. A program to do this might look like:

#include <cstdlib>
#include <cstdio>
void CalcF(double t,double &F,double &Fprime);
using namespace std;

int main(){

17



PHY 321 2 NEWTON’S LAWS

int ntries=0;
double tguess,tolerance=1.0E-8,F,Fprime,delt;
printf("Enter tguess: ");
scanf("%lf",&tguess);
CalcF(tguess,F,Fprime);
do{

delt=-F/Fprime;
if(fabs(delt)>0.5*fabs(tguess))

delt=0.5*tguess*delt/fabs(delt);
tguess=tguess+delt;
CalcF(tguess,F,Fprime);
ntries+=1;

}while(fabs(F)>tolerance && ntries<20);
if(ntries<20)

printf("Solution: t=%g\n",tguess);
else

printf("Failed to converge after 20 tries\n");
return 0;

}

IN CLASS EXERCISE
Write a program that solves for the range of a particle’s motion given its initial velocity v0, initial
direction θ0 (in degrees) and a damping factor γ. Have the program prompt you to enter these
three inputs. The program should use Newton’s method to find the time at which y = 0. As
a first guess for the time, you might try tguess = 2v0y/g. In this case Newton’s method would
need the function F to be replaced by y(t) given in Eq. (2.20) and F ′ would be vy.

2.3 Motion in a Magnetic Field

Another example of a velocity-dependent force is magnetism,

F⃗ = qv⃗ × B⃗, (2.23)

Fi = q
∑
jk

ϵijkvjBk.

For a uniform field in the z direction B⃗ = Bẑ, the force can only have x and y components,

Fx = qBvy, (2.24)
Fy = −qBvx.

The z motion is trivial, vz =constant. The differential equations for the x and y motion are

v̇x = ωcvy, (2.25)
v̇y = −ωcvx.

ωc ≡ qB/m. (2.26)
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One can solve the equations by taking time derivatives of either equation, then substituting into
the other equation,

v̈x = ωcv̇y = −ω2
cvx, (2.27)

v̈y = −ωcv̇x = −ωcvy.

The solution to these equations can be seen by inspection,

vx = A sin(ωct + ϕ), (2.28)
vy = A cos(ωct + ϕ).

One can integrate the equations to find the positions as a function of time,

x − x0 =

∫ x

x0

dx =

∫ t

0

dtvx(t) (2.29)

=
−A

ωc

cos(ωct + ϕ),

y − y0 =
A

ωc

sin(ωct + ϕ).

The trajectory is a circle centered at x0, y0 with amplitude A rotating in the clockwise direction.

The equations of motion for the z motion are

v̇z = 0, (2.30)

which leads to
z − z0 = Vzt. (2.31)

Added onto the circular motion in the x − y plane, the three-dimensional motion is helical.

Note that the kinetic energy,

T =
1

2
m(v2

x + v2
y + v2

z) =
1

2
m(ω2

cA
2 + V 2

z ), (2.32)

is constant. This is because the force is perpendicular to the velocity, so that in any differential
time element dt the work done on the particle F⃗ · dr = dtF⃗ · v = 0.

One should think about the implications of a velocity dependent force. Suppose one had a
constant magnetic field in deep space. If a particle came through with velocity v0, it would
undergo cyclotron motion with radius R = v0/ωc. However, if it were still its motion would
remain fixed. Now, suppose an observer looked at the particle in one reference frame where the
particle was moving, then changed their velocity so that the particle’s velocity appeared to be
zero. The motion would change from circular to fixed. Is this possible?

The solution to the paradox above relies on understanding relativity. Imagine that the first ob-
server believes B⃗ ̸= 0 and that the electric field E⃗ = 0. If the observer then changes reference
frames by accelerating to a velocity v⃗, in the new frame B⃗ and E⃗ both change. If the observer
moved to the frame where the charge, originally moving with a small velocity v, is now at rest,
the new electric field is indeed v⃗ × B⃗, which then leads to the same acceleration as one had
before. If the velocity is not small compared to the speed of light, additional γ factors come into
play, γ = 1/

√
1 − (v/c)2. Relativistic motion will not be considered in this course.
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2.4 Conservation of Energy

Energy conservation is most convenient as a strategy for addressing problems where time does
not appear. For example, “a particle goes from position x0 with speed v0, to position xf – what
is its new speed?” However, it can also be applied to problems where time does appear, such as
in solving for the trajectory x(t), or equivalently t(x). This is the focus of this sub-section.

Energy is conserved in the case where the potential energy, U(r⃗), depends only on position, and
not on time. The force is determined by U ,

F⃗ (r⃗) = −∇U(r⃗). (2.33)

The net energy, E = U + T where T is the kinetic energy, is then conserved,

d

dt
(T + U) =

d

dt

(
m

2
(v2

x + v2
y + v2

z) + U(r⃗)

)
(2.34)

= m

(
vx

dvx

dt
+ vy

dvy

dt
+ vz

dvz

dt

)
+ ∂xU

dx

dt
+ ∂yU

dy

dt
+ ∂zU

dz

dt
= vxFx + vyFy + vzFz − Fxvx − Fyvy − Fzvz = 0.

The same proof can be written more compactly with vector notation,

d

dt

(
m

2
v2 + U(r⃗)

)
= mv⃗ · ˙⃗v + ∇U(r⃗) · ˙⃗r (2.35)

= v⃗ · F⃗ − F⃗ · v⃗ = 0.

Inverting the expression for kinetic energy,

v =
√

2T/m =
√

2(E − U)/m, (2.36)

allows one to solve for the one-dimensional trajectory x(t), by finding t(x),

dt =
dx

v
, (2.37)

t =

∫ x

x0

dx′

v(x′)
=

∫ x

x0

dx′√
2(E − U(x′))/m

, (2.38)

where x0 is the position at t = 0. Note this would be much more difficult in higher dimensions,
because you would have to determine which points, x, y, z, the particles might reach in the
trajectory, whereas in one dimension you can typically tell by simply seeing whether the kinetic
energy is positive at every point between the old position and the new position.

Example 2.2: Trajectory in Harmonic Oscillator
Consider a simple harmonic oscillator potential, U(x) = kx2/2, with a particle emitted from
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x = 0 with velocity v0. Solve for the trajectory t(x),

t =

∫ x

0

dx′√
2(E − kx2/2)/m

(2.39)

=
√

m/k

∫ x

0

dx′√
x2
max − x′2

, x2
max = 2E/k.

Here E = mv2
0/2 and xmax is defined as the maximum displacement before the particle turns

around. This integral is done by the substitution sin θ = x/xmax.

(k/m)1/2t = sin−1(x/xmax), (2.40)

x = xmax sinωt, ω =
√

k/m.

2.5 Solving an Integral Numerically

As an example of an integral to solve numerically, consider the integral in Eq. (2.38). First,
rewrite the integral as a sum,

t =
N∑

n=1

∆x[2(E − U(xn)/m]−1/2, (2.41)

where ∆x = (x−x0)/N and xn = x0+(n−1/2)∆x. Note that for better accuracy the value
of xn should be placed in the center of the nth interval. The accuracy will improve for higher
values of N , or equivalently, smaller step size ∆x. The pertinent part of a C++ program might
look something like:

#include <cstdlib>
#include <cstdio>
using namespace std;

double U(double x){
return "whatever function you like";

}

int main(){
int n,N=100;
double Deltax,x,x_n,t=0.0,E,mass=2.0;
double x0,xf,v0; // intial and final positions and initial velocity
printf("Enter initial and final positions: ");
scanf("%lf %lf",&x0,&xf);
printf("Enter initial velocity: ");
scanf("%lf",&v0);
E=0.5*mass*v0*v0+U(x0);
x=x0;
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Deltax=(xf-x0)/N;
for(x_n=x0+0.5*Deltax;x_n<xf;x_n+=Deltax){

t+=Deltax/sqrt(2*(E-U(x_n))/m);
x+=Deltax;
printf("t=%g, x=%g\n",t,x);

}
return 0;

}

2.6 Numerically Solving Equations of Motion from Potentials

A more straight-forward way to solve for equations of motion from potentials is to generate the
force from the potentials,

F (x) = −∂xV (x), (2.42)

then to solve the equations of motion for a particle of mass m undergoing a known force F (x),

ẋ = v, (2.43)

v̇ =
1

m
F (x). (2.44)

Numerically, the two equations can be written,

xn+1 = xn + vn+1/2∆t, (2.45)

vn+3/2 = vn+1/2 +
1

m
F (xn+1)∆t. (2.46)

Here, the subscript refers to the discretized time, t = n∆t. Note that the r.h.s. of each equation
is centered at the midpoint of the time interval used to take the derivative. This is crucial for
numerical accuracy. If the formula had been of the form xn+1 = xn + vn∆t, there is a numeric
error linear with the time step size. By centering the derivatives as done above, the error in-
creases quadratically with the step size, and is far more accurate. The algorithm above, where
the positions and forces are specified at integral time steps, whereas the velocities are specified
at half-integral time steps is known as the leap-from algorithm. This works wonderfully when
the force depends only on position. If one adds velocity dependent forces, one must rethink the
method (perhaps some kind of Runge-Kutta).

2.7 Conservation of Momentum

Newton’s third law, "For every action there is an equal and opposite reaction", is more accurately
stated in the text,

If two bodies exert forces on each other, these forces are equal in magnitude and opposite in
direction.
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This means that for two bodies i and j, if the force on i due to j is called F⃗ij , then

F⃗ij = −F⃗ji. (2.47)

Newton’s second law, F⃗ = ma⃗, can be written for a particle i as

F⃗i =
∑
j ̸=i

F⃗ij = mia⃗i, (2.48)

where F⃗i (a single subscript) denotes the net force acting on i. Because the mass of i is fixed, one
can see that

F⃗i =
d

dt
miv⃗i =

∑
j ̸=i

F⃗ij. (2.49)

Now, one can sum over all the particles and obtain

d

dt

∑
i

mivi =
∑

ij,i ̸=j

F⃗ij (2.50)

= 0.

The last step made use of the fact that for every term ij, there is an equivalent term ji with
opposite force. Because the momentum is defined as mv⃗, for a system of particles,

d

dt

∑
i

miv⃗i = 0, for isolated particles. (2.51)

By "isolated" one means that the only force acting on any particle i are those originating from
other particles in the sum, i.e. no “external” forces. Thus, Newton’s third law leads to the
conservation of total momentum,

P⃗ =
∑
i

miv⃗i, (2.52)

d

dt
P⃗ = 0.

Example 2.3: Standard Rocket Problem
Consider a rocket of mass M0 that ejects gas from the bottom of the rocket with a speed ve

relative to the rocket. The rocket’s mass reduces as the fuel is ejected by a rate α = −dM/dt.
Find the speed of the rocket as a function of time in terms of the initial mass and α. Neglect
gravity.
Solution:
Consider the rocket of mass M moving with velocity v. After a brief instant, the velocity
of the rocket is v + ∆v and the mass is M − ∆mf , where mf is the amount fuel burned.
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Momentum conservation gives

Mv = (M − ∆Mf)(v + ∆v) + ∆Mf(v − ve)

0 = −∆Mv + M∆v + ∆Mf(v − ve),

0 = M∆v − ∆Mfve.

In the second step we ignored the term ∆M∆v because it is doubly small. The last equation
gives

∆v =
ve

M
∆Mf = −

ve

M
∆M, (2.53)

where ∆M , the change is mass of the rocket is −∆Mf . After dividing both sides of the
equation by ∆t, the acceleration is then

dv

dt
= −

ve

M

dM

dt
.

Integrating the expression with lower limits v0 = 0 and M0, one finds

v = −ve

∫ M

M0

dM ′

M ′

v = −ve ln(M/M0)

= −ve ln[(M0 − αt)/M0] = ve ln[M0/(M0 − αt)].

where α = dMf/dt is the rate fuel is being burned.

Because the total momentum of an isolated system is constant, one can also quickly see that the
center of mass of an isolated system is constant. The center of mass is the average position of a
set of masses weighted by the mass,

x̄ =

∑
i mixi∑
i mi

.

The rate of change of x̄ is

˙̄x =
1

M

∑
i

miẋi =
1

M
Px. (2.54)

Thus if the total momentum is constant the center of mass moves at a constant velocity, and if
the total momentum is zero the center of mass is fixed.

2.8 Conservation of Angular Momentum

Consider a case where the force always points radially,

F⃗ (r⃗) = F (r)r̂, (2.55)
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where r̂ is a unit vector pointing outward from the origin. The angular momentum is defined as

L⃗ = r⃗ × p⃗ = mr⃗ × v⃗. (2.56)

The rate of change of the angular momentum is

dL⃗

dt
= mv⃗ × v⃗ + mr⃗ × ˙⃗v (2.57)

= mv⃗ × v⃗ + r⃗ × F⃗ = 0.

The first term is zero because v⃗ is parallel to itself, and the second term is zero because F⃗ is
parallel to r⃗.

As an aside, one can see from the Levi-Civita symbol that the cross product of a vector with itself
is zero. Here, we consider a vector

V⃗ = A⃗ × A⃗, (2.58)

Vi = (A⃗ × A⃗)i =
∑
jk

ϵijkAjAk.

For any term i, there are two contributions. For example, for i denoting the x direction, either j
denotes the y direction and k denotes the z direction, or vice versa, so

V1 = ϵ123A2A3 + ϵ132A3A2. (2.59)

This is zero by the antisymmetry of ϵ under permutations.

If the force is not radial, r⃗× F⃗ ̸= 0 in Eq. (2.57), and angular momentum is no longer conserved,

dL⃗

dt
= r⃗ × F⃗ ≡ τ⃗ , (2.60)

where τ⃗ is the torque.

For a system of isolated particles, one can write

d

dt

∑
i

L⃗i =
∑
i ̸=j

r⃗i × F⃗ij (2.61)

=
1

2

∑
i̸=j

r⃗i × F⃗ij + r⃗j × F⃗ji

=
1

2

∑
i̸=j

(r⃗i − r⃗j) × F⃗ij

= 0, if two-body forces are parallel to one another. (2.62)

Here, going from the second line to the third line used Newton’s third law, F⃗ij = −F⃗ji. If the
forces between the particles are parallel to their separation, i.e. F⃗ij || (r⃗i − r⃗j), then each term
in the sum is zero and the net angular momentum is fixed. Otherwise, you could imagine an
isolated system that would start spinning spontaneously.
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Extended rigid bodies have angular momentum even if their center of mass is not moving. If one
considers a body rotating about the origin with angular velocity ω about the z axis, the velocity
of any small part of the object has momentum,

p⃗i = miriωϕ̂, (2.63)

where ϕ̂ is a unit vector perpendicular to both r⃗i and the z axis. The net angular momentum is

L⃗ =
∑
i

r⃗i × p⃗i, (2.64)

=
∑
i

mir
2
iω r̂ × ϕ̂,

Lz =
∑
i

mir
2
i,⊥ω,

ri,⊥ =
√
x2
i + y2

i .

Here,
∑

i mir
2
i,⊥ is known as the moment of inertia about the z axis, I , and

Lz = Iω. (2.65)

Writing each small contribution to the mass as d3riρm(r⃗i), where ρm is the mass density,

I =

∫
d3r ρ(r⃗)(x2 + y2). (2.66)

In the next mechanics course, you will study rigid body motion, at which time the moment of
inertia will be considered more generally about any axis. It will then be identified as a second-
rank tensor. For here, we consider a single axis.

If an extended rigid body is rotating about its center-of-mass, and if the center-of-mass is mov-
ing, one can express the total angular momentum as the sum of that around the center-of-mass
and the angular momentum of the center-of-mass, R⃗cm.

L⃗ =
∑
i

mi(r⃗i − R⃗cm) × v⃗i + MR⃗cm × V⃗cm, (2.67)

V⃗cm ≡
1

M

∑
i

p⃗i,

R⃗cm ≡
1

M

∑
i

mir⃗i. (2.68)

Now to express the first term for L⃗ in terms of the velocities relative to the center-of-mass frame,
plus the contribution from the velocity of the center-of-mass frame,

L⃗ =
∑
i

mi(r⃗i − R⃗cm) × (v⃗i − V⃗cm) +

(∑
i

mi(r⃗i − R⃗cm)

)
× V⃗cm (2.69)

+MR⃗cm × V⃗cm. (2.70)
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The middle term vanishes because of the definition of the center-of-mass,∑
i

mir⃗i = MR⃗, (2.71)

This gives

L⃗ =
∑
i

mi(r⃗i − R⃗cm) × (v⃗i − V⃗cm) + MR⃗cm × V⃗cm, (2.72)

with the first term representing the angular momentum as defined by an observer positioned
at the center-of-mass and moving with the velocity of the center-of-mass, and the second term
represents the angular momentum of the center-of-mass.

Example 2.4: Rolling Disk
Here, we consider a uniform disk of mass M and radius a that initially has zero velocity, but is
rotating with angular momentum ω, with the axis of rotation parallel to the ground. It is then
lowered by a very small distance so that it comes into contact with the ground, a horizontal
plane. The disk is initially slipping on the surface, but after some time the slipping stops and
the disk rolls without friction.

a. What is the moment of inertia of the disk?

b. What is the initial angular momentum of the disk about the point where the disk initially
comes into contact with the disk, i.e. at the bottom of the disk?

c. Is angular momentum about this point conserved? Is is conserved about a point defined
by the initial center-of-mass of the disk?

d. What is the final speed of the disk?

Solution:
a.) Integrating over the density per unit area, ρ = M/(πa2),

I =
M

πa2

∫
2πrdr r2

=
Ma2

2
.

b.) The initial angular momentum about the point at the bottom of the disk is the same as
the angular momentum about the center-of-mass because the center-of-mass is not initially
moving.

L = Iω0. (2.73)

c.) There are three forces acting on the disk: gravity, the normal force, and friction. The first
two cancel one another. Because friction is horizontal and acts on the bottom of the disk,
angular momentum about a point at the bottom of the disk will be conserved because the
frictional force provides no torque in that coordinate system. However, if one defines the
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origin as the point initially at the center of the disk, then the frictional force does provide a
torque, and angular momentum would not be conserved in that case.
d.) One can find the final speed by using conservation of angular momentum,

Iω0 = Iωf + Mvfa.

Once the sliding stops, the final velocity and final rotational velocities are related by vf =
aωf , and

Iω0 =

(
I

a
+ Ma

)
vf ,

vf =
aω0

1 + Ma2/I

=
1

3
aω0.

One can write the torque about a given axis, which we will denote as ẑ, in polar coordinates. In
polar coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (2.74)

To find the z component of the torque,

τz = xFy − yFx (2.75)
= −r sin θ {cosϕ∂y − sinϕ∂x}V (x, y, z).

One can use the chain rule to write the partial derivative w.r.t. ϕ (keeping r and θ fixed),

∂ϕ =
∂x

∂ϕ
∂x +

∂y

∂ϕ
∂y +

∂z

∂ϕ
∂z (2.76)

= −r sin θ sinϕ∂x + r sin θ cosϕ∂y.

Combining the two equations,

τz = −∂ϕV (r, θ, ϕ). (2.77)

Thus, if the potential is independent of the azimuthal angle ϕ, there is no torque about the z axis
and Lz is conserved.

2.9 Symmetries and Conservation Laws

When we derived the conservation of energy, we assumed that the potential depended only on
position, not on time. If it depended explicitly on time, one can quickly see that the energy
would have changed at a rate ∂tV (x, y, z, t). Note that if there is no explicit dependence on
time, i.e. V (x, y, z), the potential energy can depend on time through the variations of x, y, z
with time. However, that variation does not lead to energy non-conservation. Further, we just
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saw that if a potential does not depend on the azimuthal angle about some axis, ϕ, that the
angular momentum about that axis is conserved.

Now, we relate momentum conservation to translational invariance of the potential, i.e. the
potential does not depend on one or more of the coordinates, x, y, z. Considering a system of
particles with positions, r⃗i, if one changed the coordinate system by a translation by a differential
distance ϵ⃗, the net potential would change by

δV (r⃗1, r⃗2 · · · ) =
∑
i

ϵ⃗ · ∇iV (r⃗1, r⃗2, · · · ) (2.78)

= −
∑
i

ϵ⃗ · F⃗i

= −ϵ⃗ ·
d

dt

∑
i

p⃗i.

Thus, if the potential is unchanged by a translation of the coordinate system, the total momen-
tum is conserved. If the potential is translationally invariant in a given direction, defined by a
unit vector, ϵ̂ in the ϵ⃗ direction, one can see that

ϵ̂ · ∇iV (r⃗i) = 0. (2.79)

The component of the total momentum along that axis is conserved. This is rather obvious for a
single particle. If V (r⃗) does not depend on some coordinate x, then the force in the x direction
is Fx = −∂xV = 0, and momentum along the x direction is constant.

We showed how the total momentum of an isolated system of particle was conserved, even if the
particles feel internal forces in all directions. In that case the potential energy could be written

V =
∑
i,j≤i

Vij(r⃗i − r⃗j). (2.80)

In this case, a translation leads to r⃗i → r⃗i + ϵ⃗, with the translation equally affecting the coor-
dinates of each particle. Because the potential depends only on the relative coordinates, δV is
manifestly zero because the translation does not change r⃗i − r⃗j . If one were to go through the
exercise of calculating δV for small ϵ⃗ in Eq. (2.78), one would find that the term ∇iVij(r⃗i − r⃗j)
would be canceled by the term ∇jVij(r⃗i − r⃗j).

The relation between symmetries of the potential and conserved quantities (also called constants
of motion) is one of the most profound concepts one should gain from this course. It plays
a critical role in all fields of physics. This is especially true in quantum mechanics, where a
quantity A is conserved if its operator commutes with the Hamiltonian. For example if the
momentum operator −iℏ∂x commutes with the Hamiltonian, momentum is conserved, and
clearly this operator commutes if the Hamiltonian (which represents the total energy, not just the
potential) does not depend on x. Also in quantum mechanics the angular momentum operator
is Lz = −iℏ∂ϕ. In fact, if the potential is unchanged by rotations about some axis, angular
momentum about that axis is conserved. Later in the course, we return to this concept, from a
more formal perspective, when Lagrangian mechanics is presented.
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Example 2.5: Conservation Laws
Consider a particle of mass m moving according to the potential

V (x, y, z) = A exp

{
−
x2 + z2

2a2

}
.

Of the quantities, E, px, py, pz, Lx, Ly, Lz are conserved?
Solution:
One has both rotational and translational invariance about the y axis, so Ly and py are con-
served. Because the potential does not depend explicitly on time, energy is also conserved.

2.10 Exercises

1. Consider a bicyclist with air resistance proportional to v2 and rolling resistance propor-
tional to v, so that

dv

dt
= −Bv2 − Cv.

If the cyclist has initial velocity v0 and is coasting on a flat course, a) find her velocity as a
function of time, and b) find her position as a function of time.

2. For Eq. (2.22) show that in the limit where γ → 0 one finds t = 2v0y/g.

3. The motion of a charged particle in an electromagnetic field can be obtained from the
Lorentz equation. If the electric field vector is E and the magnetic field is B, the force
on a particle of mass m that carries a charge q and has a velocity v

F⃗ = qE⃗ + qv⃗ × B⃗

where we assume v << c (speed of light).

(a) If there is no electric field and if the particle enters the magnetic field in a direction
perpendicular to the lines of magnetic flux, show that the trajectory is a circle with
radius

r =
mv

qB
=

v

ωc

,

where ωc ≡ qB/m is the cyclotron frequency.
(b) Choose the z-axis to lie in the direction of B and let the plane containing E and B be

the yz−plane. Thus
B = Bk̂, E = Eyĵ + Ezk̂.

Show that the z component of the motion is given by

z(t) = z0 + ż0t +
qEz

2m
t2,

where
z(0) ≡ z0 and ż(0) ≡ ż0.
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(c) Continue the calculation and obtain expressions for ẋ(t) and ẏ(t). Show that the time
averages of these velocity components are

⟨ẋ⟩ =
Ey

B
, ⟨ẏ⟩ = 0.

I.e. show that the motion is periodic and then average over one complete period.
Hint: write equations of motion for vy and for ṽx ≡ vx − Ey/B.

(d) Integrate the velocity equations found in (c) and show (with the initial conditions
x(0) = −A/ωc, ẋ(0) = Ey/B, y(0) = 0, ẏ(0) = A that

x(t) =
−A

ωc

cosωct +
Ey

B
t, y(t) =

A

ωc

sinωct.

These are the parametric equations of a trochoid. Sketch the projections of the tra-
jectory on the xy-plane for the cases (i) A > |Ey/B|, (ii) A < |Ey/B|, and (iii)
A = |Ey/B|. (The last case yields a cycloid.)

4. A particle of mass m has velocity v = α/x, where x is its displacement. Find the force
F (x) responsible for the motion.

5. A particle is under the influence of a force F = −kx + kx3/α2, where k and α are
constants and k is positive. Determine U(x) and discuss the motion. What happens when
E = (1/4)kα2?

6. Using Eq. (2.38) find the position as a function of a time by numerical integration for the
case where a particle of mass m moves under the potential U(x) = U0

√
x/L and for

an initial velocity v0. Use the following values: m = 2.5kg, v0 = 75.0, L = 10m,
U0=15 J. Solve for time until the particle returns to the origin given that it started at the
origin moving with velocity v0. Make a graph of x vs t for the entire trajectory from your
computer output. Turn in the graph and a printout of your program.

7. Prove that the work on the center of mass of a system of particles during a small time
interval δt, which is defined by

δWcm ≡ F⃗tot · δr⃗cm,

is equal to the change of the kinetic energy of the center of mass,

Tcm ≡
1

2
Mtotv

2
cm, δTcm = Mtotv⃗cm · δv⃗cm.

Use the following definitions:

F⃗tot =
∑
i

F⃗i,

Mtot =
∑
i

mi,

r⃗cm =
1

Mtot

∑
i

mir⃗i,

v⃗cm =
1

Mtot

∑
i

miv⃗i.
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8. Consider a rocket with initial mass M0 at rest in deep space. It fires its engines which eject
mass with an exhaust speed ve relative to the rocket. The rocket loses mass at a constant
rate α = dM/dt. Find the speed of the rocket as a function of time.

9. Imagine that a rocket can be built so that the best percentage of fuel to overall mass is 0.9.
Explain the advantage of having stages.

10. Ted and his iceboat have a combined mass of 200 kg. Ted’s boat slides without friction on
the top of a frozen lake. Ted’s boat has a winch and he wishes to wind up a long heavy
rope of mass 300 kg and length 100 m that is laid out in a straight line on the ice. Ted’s boat
starts at rest at one end of the rope, then brings the rope on board the ice boat at a constant
rate of 0.25 m/s. After 400 seconds the rope is all aboard the iceboat.

(a) Before Ted turns on the winch, what is the position of the center of mass relative to
the boat?

(b) Immediately after Ted starts the winch, what is his speed?

(c) Immediately after the rope is entirely on the boat, what is Ted’s speed?

(d) Immediately after the rope is entirely on board, what is Ted’s displacement relative to
his original position?

(e) Immediately after the rope is entirely on board, where is the center of mass compared
to Ted’s original position?

(f) Find Ted’s velocity as a function of time.

11. Two disks are initially at rest, each of mass M , connected by a string between their centers.
The disks slide on low-friction ice as the center of the string is pulled by a string with a
constant force F through a distance d. The disks collide and stick together, having moved
a distance b horizontally. Determine the final speed of the disks just after they collide. You
may want to use the derivations from number 7.

12. Santa Claus is skating on the magic ice near the North Pole, which is frictionless. A mass-
less rope sticks out from the pole horizontally along a straight line. The rope’s original
length is L0. Santa approaches the rope moving perpendicular to the direction of the rope
and grabs the end of the rope. The diameter of the North Pole is 2a. The rope then winds
around the thin pole, a << L0, until Santa is half the original distance, L0/2, from the
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pole. If Santa’s original speed was v0, what is his new speed? Assume there is no energy
wasted in curving the rope around the pole.
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3 Oscillations

3.1 Harmonic Oscillator

The harmonic oscillator is omnipresent in physics. Although students think of this as being re-
lated to springs, it, or an equivalent mathematical representation, appears in just about any prob-
lem where a mode is sitting near its potential energy minimum. At that point, ∂xV (x) = 0, and
the first non-zero term (aside from a constant) in the potential energy is that of a harmonic oscil-
lator. In a solid, sound modes (phonons) are built on a picture of coupled harmonic oscillators,
and in relativistic field theory the fundamental interactions are also built on coupled oscillators
positioned infinitesimally close to one another in space. The phenomena of a resonance of an
oscillator driven at a fixed frequency plays out repeatedly in atomic, nuclear and high-energy
physics, when quantum mechanically the evolution of a state oscillates according to e−iEt/ℏ and
exciting discrete quantum states has very similar mathematics as exciting a harmonic oscillator
with its resonant frequency.

The potential energy for a single particle as a function of its position x can be written as a Taylor
expansion about some point x0

V (x) = V (x0) + (x− x0) ∂xV (x)|x0
+

1

2
(x− x0)

2 ∂2
xV (x)

∣∣
x0

+
1

3!
∂3
xV (x)

∣∣
x0

+ · · · (3.1)

If the position x0 is at the minimum of the potential, the first two non-zero terms of the potential
are

V (x) ≈ V (x0) +
1

2
(x − x0)

2 ∂2
xV (x)

∣∣
x0

, (3.2)

= V (x0) +
1

2
k(x − x0)

2, k ≡ ∂2
xV (x)

∣∣
x0

,

F = −∂xV (x) = −k(x − x0).

This the usual force for a body attached to a spring, where k is the spring constant and the
equilibrium position is x0.

Put into Newton’s 2nd law (assuming x0 = 0),

mẍ = −kx, (3.3)
ẍ = −ω2

0x, (3.4)

x(t) = A cos(ω0t − ϕ), ω0 =
√

k/m. (3.5)

Here, A and ϕ are arbitrary. This expresses the profound fact that the harmonic oscillator oscil-
lates with a frequency, f0 = ω0/2π, which is independent of the amplitude.

Equivalently, one could have written x(t) as A cos(ω0t) + B sin(ω0t), or as the real part of
Aeiω0t. In this last case A could be an arbitrary complex constant. Thus, there are 2 arbitrary
constants (either A and B or A and ϕ, or the real and imaginary part of one complex constant.
This is the expectation for a second order differential equation, and also agrees with the physical
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expectation that if you know a particle’s initial velocity and position you should be able to de-
fine its future motion, and that those two arbitrary conditions should translate to two arbitrary
constants.

A key feature of harmonic motion is that the system repeats itself after a time T = 1/f , where f
is the frequency, and ω = 2πf is the angular frequency. The period of the motion is independent
of the amplitude. However, this independence is only exact when one can neglect higher terms
of the potential, x3, x4 · · · . One can neglect these terms for sufficiently small amplitudes. For
larger amplitudes, the cubic or quartic terms might become relevant and the motion would no
longer be purely sinusoidal, and even though the motion repeats itself, the time for repeating
the motion is no longer independent of the amplitude.

One can also calculate the velocity and kinetic energy as a function of time,

ẋ = −ω0A sin(ω0t − ϕ), (3.6)

T =
1

2
mẋ2 =

mω2
0A

2

2
sin2(ω0t − ϕ),

=
k

2
A2 sin2(ω0t − ϕ).

The total energy is then

E = T + U =
1

2
mẋ2 +

1

2
kx2 (3.7)

=
1

2
mẋ2 +

1

2
mω2x2 (3.8)

=
1

2
mω2A2 =

1

2
kA2. (3.9)

This is the same as the potential energy when the magnitude of x(t) is at a maximum, or the
kinetic energy when x = x0. The total energy scales as the square of the amplitude.

Example 3.1: Pendulum
A pendulum is an example of a harmonic oscillator. By expanding the kinetic and potential
energies for small angles, find the frequency of a pendulum of length L with all the mass m
centered at the end by writing the eq.s of motion in the form of a harmonic oscillator.
Solution: The potential energy and kinetic energies are (for x being the displacement)

U = mgL(1 − cos θ) ≈ mgL
x2

2L2
,

T =
1

2
mL2θ̇2 ≈

m

2
ẋ2.

Here, we have made use of the fact that for small angles, the distance moved is x ≈ Lθ. For
small x/L Newton’s 2nd law becomes

mẍ = −
mg

L
x,

and the spring constant would appear to be k = mg/L, which makes the frequency equal to
ω0 =

√
g/L. Note that the frequency is independent of the mass.
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3.2 Damped Oscillators

In this chapter we consider only the case where the damping force is proportional to the ve-
locity. This is counter to dragging friction, where the force is proportional in strength to the
normal force and independent of velocity, and is also inconsistent with wind resistance, where
the magnitude of the drag force is proportional the square of the velocity. Rolling resistance does
seem to be mainly proportional to the velocity. However, the main motivation for considering
damping forces proportional to the velocity is that the math is more friendly. This is because
the differential equation is linear, i.e. each term is of order x, ẋ, ẍ · · · , or even terms with no
mention of x, and there are no terms such as x2 or xẍ. Many systems in physics, not just in
classical mechanics, are well described by similar linear differential equations.

The equations of motion for a spring with damping force −bẋ are

mẍ + bẋ + kx = 0. (3.10)

Just to make the solution a bit less messy, we rewrite this equation as

ẍ + 2βẋ + ω2
0x = 0, β ≡ b/2m, ω0 ≡

√
k/m. (3.11)

Both β and ω have dimensions of inverse time. To find solutions you must make an educated
guess at the form of the solution. To do this, first realize that the solution will need an arbitrary
normalization A because the equation is linear. Or in other words, if you find a solution to Eq.
(3.11), you can multiply the expression by an arbitrary constant and the new expression will also
be a solution because every term is Eq. (3.11 is linear in x or its derivatives.

Secondly, realize that if the form is
x = Aert (3.12)

each derivative simply brings out an extra power of r. This means that the Aert factors out and
one can simply solve for an equation for r. Plugging this form into Eq. (3.11),

r2 + 2βr + ω2
0 = 0. (3.13)

Because this is a quadratic equation there will be two solutions,

r = −β ±
√

β2 − ω2
0. (3.14)

We refer to the two solutions as r1 and r2 corresponding to the + and − roots. As expected,
there should be two arbitrary constants involved in the solution,

x = A1e
r1t + A2e

r2t, (3.15)

where the coefficients A1 and A2 are determined by initial conditions.

The roots listed above,
√

ω2
0 − β2, will be imaginary if the damping is small and β < ω0. In

that case, r is complex and the factor ert will have some oscillatory behavior. If the roots are
real, there will only be exponentially decaying solutions. There are three cases:
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1. Underdamped: β < ω0

x = A1e
−βteiω′t + A2e

−βte−iω′t, ω′ ≡
√

ω2
0 − β2 (3.16)

= (A1 + A2)e
−βt cosω′t + i(A1 − A2)e

−βt sinω′t.

Here we have made use of the identity eiω′t = cosω′t + i sinω′t. Because the constants
are arbitrary, and because the real and imaginary parts are both solutions individually, we
can simply consider the real part of the solution alone:

x = B1e
−βt cosω′t + B2e

−βt sinω′t, (3.17)

ω′ ≡
√
ω2

0 − β2.

2. Critical dampling: β = ω0

In this case the two terms involving r1 and r2 are identical because ω′ = 0. Because we
need to arbitrary constants, there needs to be another solution. Again, this is found by
simply guessing, or by taking the limit of ω′ → 0 from the underdamped solution. The
solution is then

x = Ae−βt + Bte−βt. (3.18)

The critically damped solution is interesting because the solution approaches zero quickly,
but does not oscillate. For a problem with zero initial velocity, the solution never crosses
zero. This is a good choice for designing shock absorbers or swinging doors.

3. Overdamped: β > ω0

x = A1e
−(β+

√
β2−ω2

0)t + A2e
−(β−

√
β2−ω2

0)t (3.19)

This solution will also never pass the origin more than once, and then only if the initial
velocity is strong and initially toward zero.

Example 3.2: Damped Oscillator
Given b, m and ω0, find x(t) for a particle whose initial position is x = 0 and has initial
velocity v0 (assuming an underdamped solution).
Solution: The solution is of the form,

x = e−βt [A1 cosω
′t + A2 sinω′t] ,

ẋ = −βx + ω′e−βt [−A1 sinω′t + A2 cosω
′t] .

ω′ ≡
√

ω2
0 − β2, β ≡ b/2m.

From the initial conditions, A1 = 0 because x(0) = 0 and ω′A2 = v0. So

x =
v0

ω′
e−βt sinω′t.
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3.3 Sinusoidally Driven Oscillators

Here, we consider the force
F = −kx − bẋ + F0 cosωt, (3.20)

which leads to the differential equation

ẍ + 2βẋ + ω2
0x = (F0/m) cosωt. (3.21)

Consider a single solution with no arbitrary constants, which we will call a particular solution,
xp(t). It should be emphasized that this is A particular solution, because there exists an infi-
nite number of such solutions because the general solution should have two arbitrary constants.
Now consider solutions to the same equation without the driving term, which include two arbi-
trary constants. These are called either homogenous solutions or complementary solutions, and were
given in the previous section, e.g. Eq. (3.17) for the underdamped case. The homogenous solu-
tion already incorporates the two arbitrary constants, so any sum of a homogenous solution and
a particular solution will represent the general solution of the equation. The general solution in-
corporates the two arbitrary constants A and B to accommodate the two initial conditions. One
could have picked a different particular solution, i.e. the original particular solution plus any
homogenous solution with the arbitrary constants Ap and Bp chosen at will. When one adds in
the homogenous solution, which has adjustable constants with arbitrary constants A′ and B′,
to the new particular solution, one can get the same general solution by simply adjusting the
new constants such that A′ + Ap = A and B′ + Bp = B. Thus, the choice of Ap and Bp

are irrelevant, and when choosing the particular solution it is best to make the simplest choice
possible.

To find a particular solution, one first guesses at the form,

xp(t) = D cos(ωt − δ), (3.22)

and rewrite the differential equation as

D
{
−ω2 cos(ωt − δ) − 2βω sin(ωt − δ) + ω2

0 cos(ωt − δ)
}
=

F0

m
cos(ωt). (3.23)

One can now use angle addition formulas to get

D
{
(−ω2 cos δ + 2βω sin δ + ω2

0 cos δ) cos(ωt) (3.24)

+(−ω2 sin δ − 2βω cos δ + ω2
0 sin δ) sin(ωt)

}
=

F0

m
cos(ωt).

Both the cos and sin terms need to equate if the expression is to hold at all times. Thus, this
becomes two equations

D
{
−ω2 cos δ + 2βω sin δ + ω2

0 cos δ
}

=
F0

m
(3.25)

−ω2 sin δ − 2βω cos δ + ω2
0 sin δ = 0.

After dividing by cos δ, the lower expression leads to

tan δ =
2βω

ω2
0 − ω2

. (3.26)
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Using the identities tan2 +1 = csc2 and sin2 +cos2 = 1, one can also express sin δ and cos δ,

sin δ =
2βω√

(ω2
0 − ω2)2 + 4ω2β2

, (3.27)

cos δ =
(ω2

0 − ω2)√
(ω2

0 − ω2)2 + 4ω2β2

Inserting the expressions for cos δ and sin δ into the expression for D,

D =
F0/m√

(ω2
0 − ω2)2 + 4ω2β2

. (3.28)

For a given initial condition, e.g. initial displacement and velocity, one must add the homoge-
nous solution, which has two arbitrary constants then solve for the two constants to satisfy the
two initial conditions. However, because the homogenous solutions decay with time as e−βt,
the particular solution is all tha which has two arbitrary constantst remains at large times, and
is therefore the steady state solution. Because the arbitrary constants are all in the homogenous
solution, all memory of the initial conditions are lost at large times, t >> 1/β.

The amplitude of the motion, D, is linearly proportional to the driving force (F0/m), but also
depends on the driving frequency ω. For small β the maximum will occur at ω = ω0. This is
referred to as a resonance. In the limit β → 0 the amplitude at resonance approaches infinity.

3.4 Alternative Derivation for Driven Oscillators

Here, we derive the same expressions as in Eq.s (3.22-3.28) but express the driving forces as

F (t) = F0e
iωt, (3.29)

rather than as F0 cosωt. The real part of F is the same as before. For the differential equation,

ẍ + 2βẋ + ω2
0x =

F0

m
eiωt, (3.30)

one can treat x(t) as an imaginary function. Because the operations d2/dt2 and d/dt are real
and thus do not mix the real and imaginary parts of x(t), Eq. (3.30) is effectively 2 equations.
Because eωt = cosωt + i sinωt, the real part of the solution for x(t) gives the solution for a
driving force F0 cosωt, and the imaginary part of x corresponds to the case where the driving
force is F0 sinωt. It is rather easy to solve for the complex x in this case, and by taking the real
part of the solution, one finds the answer for the cosωt driving force.

We assume a simple form for the particular solution

xp = Deiωt, (3.31)

where D is a complex constant.

From Eq. (3.30) one inserts the form for xp above to get

D
{
−ω2 + 2iβω + ω2

0

}
eiωt = (F0/m)eiωt, (3.32)

D =
F0/m

(ω2
0 − ω2) + 2iβω

.
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The norm and phase for D = |D|e−iδ can be read by inspection,

|D| =
F0/m√

(ω2
0 − ω2)2 + 4β2ω2

, tan δ =
2βω

ω2
0 − ω2

. (3.33)

This is the same expression for δ as before. One then finds xp(t),

xp(t) = ℜ
(F0/m)eiωt−iδ√

(ω2
0 − ω2)2 + 4β2ω2

(3.34)

=
(F0/m) cos(ωt − δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

This is the same answer as before. If one wished to solve for the case where F (t) = F0 sinωt,
the imaginary part of the solution would work

xp(t) = ℑ
(F0/m)eiωt−iδ√

(ω2
0 − ω2)2 + 4β2ω2

(3.35)

=
(F0/m) sin(ωt − δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

Example 3.3: Damped Driven Oscillator
Consider the damped and driven harmonic oscillator worked out above. Given F0,m, β
and ω0, solve for the complete solution x(t) for the case where F = F0 sinωt with initial
conditions x(t = 0) = 0 and v(t = 0) = 0. Assume the underdamped case.
Solution: The general solution including the arbitrary constants includes both the homoge-
nous and particular solutions,

x(t) =
F0

m

sin(ωt − δ)√
(ω2

0 − ω2)2 + 4β2ω2
+ A cosω′te−βt + B sinω′te−βt.

The quantities δ and ω′ are given earlier in the section, ω′ =
√

ω2
0 − β2, δ =

tan−1(2βω/(ω2
0 − ω2). Here, solving the problem means finding the arbitrary constants

A and B. Satisfying the initial conditions for the initial position and velocity:

x(t = 0) = 0 = −η sin δ + A,

v(t = 0) = 0 = ωη cos δ − βA + ω′B,

η ≡
F0

m

1√
(ω2

0 − ω2)2 + 4β2ω2
.

The problem is now reduced to 2 equations and 2 unknowns, A and B. The solution is

A = η sin δ, B =
−ωη cos δ + βη sin δ

ω′
. (3.36)
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Figure 3.1: The maximum amplitude squared of the steady-state motion of a sinusoidally driven har-
monic oscillator is shown as a function of the driving frequency ω. This peaks near the fundamental
frequency ω0 and the full-width-half-maximum, FWHM , is given by the damping, 2β.

3.5 Resonance Widths: the Q factor

From the previous two sections, the particular solution for a driving force, F = F0 cosωt, is

xp(t) =
F0/m√

(ω2
0 − ω2)2 + 4ω2β2

cos(ωt − δ), (3.37)

δ = tan−1

(
2βω

ω2
0 − ω2

)
.

If one fixes the driving frequency ω and adjusts the fundamental frequency ω0 =
√

k/m, the
maximum amplitude occurs when ω0 = ω because that is when the term from the denominator
(ω2

0 − ω2)2 + 4ω2β2 is at a minimum. This is akin to dialing into a radio station. However, if
one fixes ω0 and adjusts the driving frequency one minimize with respect to ω, e.g. set

d

dω

[
(ω2

0 − ω2)2 + 4ω2β2
]
= 0, (3.38)

and one finds that the maximum amplitude occurs when ω =
√

ω2
0 − 2β2. If β is small relative

to ω0, one can simply state that the maximum amplitude is

xmax ≈
F0

2mβω0

. (3.39)

Figure 3.1 displays the maximum amplitude squared as a function of ω, and one can see the peak
at ω ≈ ω0. The squared amplitude is usually more the quantity of interest than the amplitude
because the power being absorbed by the oscillator is proportional to the square of the ampli-
tude, not the amplitude. The width of the peak is quantified by the full-width-half-maximum,
sometimes called FWHM and can be found by finding the frequency difference, ω − ω0, such
that the maximum response falls by a factor of two,

4ω2β2

(ω2
0 − ω2)2 + 4ω2β2

=
1

2
. (3.40)
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For small damping this occurs when ω = ω0 ± β, so the FWHM ≈ 2β. For the purposes of
tuning to a specific frequency, one wants the width to be as small as possible. The ratio of ω0 to
FWHM is known as the quality factor, or Q factor,

Q ≡
ω0

2β
. (3.41)

3.6 Principal of Superposition and Periodic Forces (Fourier Transforms)

If one has several driving forces, F (t) =
∑

n Fn(t), one can find the particular solution to each
Fn, xpn(t), and the particular solution for the entire driving force is

xp(t) =
∑
n

xpn(t). (3.42)

This is known as the principal of superposition. It only applies when the homogenous equation
is linear. If there were an anharmonic term such as x3 in the homogenous equation, then when
one summed various solutions, x = (

∑
n xn)

2, one would get cross terms. Superposition is
especially useful when F (t) can be written as a sum of sinusoidal terms, because the solutions
for each sinusoidal term is analytic, and are given in the previous two subsections.

Driving forces are often periodic, even when they are not sinusoidal. Periodicity implies that for
some time τ

F (t + τ ) = F (t). (3.43)

One example of a non-sinusoidal periodic force is a square wave. Many components in electric
circuits are non-linear, e.g. diodes, which makes many wave forms non-sinusoidal even when
the circuits are being driven by purely sinusoidal sources.

For the sinusoidal example studied in the previous subsections the period is τ = 2π/ω. How-
ever, higher harmonics can also satisfy the periodicity requirement. In general, any force that
satisfies the periodicity requirement can be expressed as a sum over harmonics,

F (t) =
f0

2
+
∑
n>0

fn cos(2nπt/τ ) + gn sin(2nπt/τ ). (3.44)

From the previous subsection, one can write down the answer for xpn(t), by substituting fn/m
or gn/m for F0/m into Eq.s (3.34) or (3.35) respectively. By writing each factor 2nπt/τ as nωt,
with ω ≡ 2π/τ ,

F (t) =
f0

2
+
∑
n>0

fn cos(nωt) + gn sin(nωt). (3.45)

The solutions for x(t) then come from replacing ω with nω for each term in the particular solu-
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tion in Eq.s (3.22-3.28),

xp(t) =
f0

2k
+
∑
n>0

αn cos(nωt − δn) + βn sin(nωt − δn), (3.46)

αn =
fn/m√

((nω)2 − ω2
0)

2 + 4β2n2ω2
,

βn =
gn/m√

((nω)2 − ω2
0)

2 + 4β2n2ω2
,

δn = tan−1

(
2βnω

ω2
0 − n2ω2

)
.

Because the forces have been applied for a long time, any non-zero damping eliminates the
homogenous parts of the solution, so one need only consider the particular solution for each n.

The problem will considered solved if one can find expressions for the coefficients fn and gn,
even though the solutions are expressed as an infinite sum. The coefficients can be extracted
from the function F (t) by

fn =
2

τ

∫ τ/2

−τ/2

dt F (t) cos(2nπt/τ ), (3.47)

gn =
2

τ

∫ τ/2

−τ/2

dt F (t) sin(2nπt/τ ).

To check the consistency of these expressions and to verify Eq. (3.47), one can insert the expan-
sion of F (t) in Eq. (3.45) into the expression for the coefficients in Eq. (3.47) and see whether

fn =?
2

τ

∫ τ/2

−τ/2

dt

{
f0

2
+
∑
m>0

fm cos(mωt) + gm sin(mωt)

}
cos(nωt). (3.48)

Immediately, one can throw away all the terms with gm because they convolute an even and an
odd function. The term with f0/2 disappears because cos(nωt) is equally positive and negative
over the interval and will integrate to zero. For all the terms fm cos(mωt) appearing in the sum,
one can use angle addition formulas to see that cos(mωt) cos(nωt) = (1/2)(cos[(m+n)ωt]+
cos[(m − n)ωt]. This will integrate to zero unless m = n. In that case the m = n term gives∫ τ/2

−τ/2

dt cos2(mωt) =
τ

2
, (3.49)

and

fn =?
2

τ

∫ τ/2

−τ/2

dt fn/2 (3.50)

= fn ✓.

The same method can be used to check for the consistency of gn.
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Figure 3.2: The periodic function F (t) = t/τ, |t| < τ/2 (black) is compared to the Fourier expansion
described in Eq. (3.52) with 10 terms (red) or 100 terms (green).

Example 3.4: Sawtooth Driving Force
Consider the driving force:

F (t) = At/τ, − τ/2 < t < τ/2, F (t + τ ) = F (t). (3.51)

Find the Fourier coefficients fn and gn for all n using Eq. (3.47).
Solution: Only the odd coefficients enter by symmetry, i.e. fn = 0. One can find gn integrat-
ing by parts,

gn =
2

τ

∫ τ/2

−τ/2

dt sin(nωt)
At

τ
(3.52)

u = t, dv = sin(nωt)dt, v = − cos(nωt)/(nω),

gn =
−2A

nωτ 2

∫ τ/2

−τ/2

dt cos(nωt) + 2A
−t cos(nωt)

nωτ 2

∣∣∣∣τ/2
−τ/2

.

The first term is zero because cos(nωt) will be equally positive and negative over the interval.
Using the fact that ωτ = 2π,

gn = −
2A

2nπ
cos(nωτ/2) (3.53)

= −
A

nπ
cos(nπ)

=
A

nπ
(−1)n+1.

The true function is compared to the expansion in Fig. 3.2 where the sum is cut off at finite n.
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3.7 Response to Transient Force

Consider a particle at rest in the bottom of an underdamped harmonic oscillator, that then feels
a sudden impulse, or change in momentum, I = F∆t at t = 0. This increases the velocity
immediately by an amount v0 = I/m while not changing the position. One can then solve the
trajectory by solving Eq. (3.17) with initial conditions v0 = I/m and x0 = 0. This gives

x(t) =
I

mω′
e−βt sinω′t, t > 0. (3.54)

Here, ω′ =
√
ω2

0 − β2. For an impulse Ii that occurs at time ti the trajectory would be

x(t) =
Ii

mω′
e−β(t−ti) sin[ω′(t − ti)]Θ(t − ti), (3.55)

where Θ(t− ti) is a step function, i.e. Θ(x) is zero for x < 0 and unity for x > 0. If there were
several impulses, linear superposition tells us that we can sum over each contribution,

x(t) =
∑
i

Ii

mω′
e−β(t−ti) sin[ω′(t − ti)]Θ(t − ti). (3.56)

Now one can consider a series of impulses, Ii, at times separated by dt, where each impulse is
given by F (ti)dt. The sum above now becomes an integral,

x(t) =

∫ ∞

−∞
dt′ F (t′)

e−β(t−t′) sin[ω′(t − t′)]

mω′
Θ(t − t′) (3.57)

=

∫ ∞

−∞
dt′ F (t′)G(t − t′),

G(∆t) =
e−β∆t sin[ω′∆t]

mω′
Θ(∆t).

The quantity e−β(t−t′) sin[ω′(t − t′)]/mω′Θ(t − t′) is called a Green’s function, G(t − t′).
It describes the response at t due to a force applied at a time t′, and is a function of t − t′.
The step function ensures that the response does not occur before the force is applied. One
should remember that the form for G would change if the oscillator were either critically- or
over-damped.

When performing the integral in Eq. (3.57) one can use angle addition formulas to factor out the
part with the t′ dependence in the integrand,

x(t) =
1

mω′
e−βt [Ic(t) sin(ω

′t) − Is(t) cos(ω
′t)] , (3.58)

Ic(t) ≡
∫ t

−∞
dt′ F (t′)eβt′ cos(ω′t′),

Is(t) ≡
∫ t

−∞
dt′ F (t′)eβt′ sin(ω′t′).

If the time t is beyond any time at which the force acts, F (t′ > t) = 0, the coefficients Ic and Is
become independent of t.
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Example 3.5: Gaussian Driving Force
Consider an undamped oscillator (β → 0), with characteristic frequency ω0 and mass m, that
is at rest until it feels a force described by a Gaussian form,

F (t) = F0 exp

{−t2

2τ 2

}
.

Find x(t) for large times (t >> τ ), where the force has died off.
Solution: Solve for the coefficients Ic and Is in Eq. (3.58). Because the Gaussian is an even
function, Is = 0, and one need only solve for Ic,

Ic = F0

∫ ∞

−∞
dt′ e−t′2/(2τ2) cos(ω0t

′)

= ℜF0

∫ ∞

−∞
dt′ e−t′2/(2τ2)eiω0t′

= ℜF0

∫ ∞

−∞
dt′ e−(t′−iω0τ2)2/(2τ2)e−ω2

0τ
2/2

= F0τ
√
2πe−ω2

0τ
2/2.

The third step involved completing the square, and the final step used the fact that the integral∫ ∞

−∞
dx e−x2/2 =

√
2π.

To see that this integral is true, consider the square of the integral, which you can change to
polar coordinates,

I =

∫ ∞

−∞
dx e−x2/2

I2 =

∫ ∞

−∞
dxdy e−(x2+y2)/2

= 2π

∫ ∞

0

rdr e−r2/2

= 2π.

Finally, the expression for x from Eq. (3.58) is

x(t >> τ ) =
F0τ

mω0

√
2πe−ω2

0τ
2/2 sin(ω0t).

3.8 Solving Equations of Motion Numerically

xn = x(n∆t). (3.59)

Assume that one knows xn for all i <≤ j. One can express the velocities and accelerations in
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Newton’s equations of motion for a mass m as:

vn =
xn+1 − xn−1

2∆t
, (3.60)

an =
vn+1/2 − vn−1/2

∆t

=
xn+1 − 2xn + xn−1

(∆t)2
.

The equations of motion at tn = n∆t become

F (xn) = man. (3.61)

If one knows xn−1 and xn the only unknown in the equation is xn+1. One can solve for it, then
move onto the next n. Note that to proceed one needs to know x at two points. This can be
tricky depending on how the initial conditions are specified.

Example 3.6: Calculating Trajectory Numerically
Write a numerical program to solve the evolution of a particle of mass m feeling a spring force,
−kx and a drag force, −bv. Assume there is also some external force, F (t) = F0 sinωt. Let
the initial conditions be x(t = 0) = 0 and v(t = 0) = v0.
Solution: The differential equation,

mẍ + bẋ + kx = 0,

becomes
m

(∆t)2
(xn+1 − 2xn + xn−1) +

b

2∆t
(xn+1 − xn−1) + kxn = F (n∆t).

Solving for xn+1,{
m

(∆t)2
+

b

2∆t

}
xn+1 =

[
2m

(∆t)2
− k

]
xn + F (n∆t) +

[
−

m

(∆t)2
+

b

2∆t

]
xn−1,

xn+1 =

[
2m

(∆t)2
− k

]
xn + F (n∆t) +

[
− m

(∆t)2
+ b

2∆t

]
xn−1

m
(∆t)2

+ b
2∆t

=

[
2 − ω2

0(∆t)2
]
xn + (F (n∆t)/m)(∆t)2 − [1 − β∆t]xn−1

1 + β∆t
.

In order to iterate forward to find xn+1, one must know xn−1 and xn. However, to get started,
one only knows one value of x, along with the velocity being zero. To get x at two time steps,
one must can use the above two pieces of information,

v0 =
x1 − x−1

2∆t
,

−bv0 − kx0 = m
x1 − 2x0 + x−1

∆t2
,
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then combine the equations to eliminate x−1 to solve for x1. The fact that x0 = 0 makes the
algebra simpler,

x1 = v0∆t −
bv0∆t2

2m
.

The program might read: (Question marks would be replaced by the given parameters of the
problem.)

double F(double t){
double F0=????,omega=????;
return F0*sin(omega*t);

}
void main(){

const int Ntsteps=???;
double x[Ntsteps+1],dt=???,k=???,m=???,b=???,v0=???;
x[0] = 0.0;
x[1] = v0*dt-0.5*b*v0/m;
for(int it=1;it<Ntsteps;it=it+1){

x[it+1]=( (2.0*m/(dt*dt)) -k)*x[it] + F(it*dt)
+ (0.5*b/dt)*x[it-1] ) / ( (m/(dt*dt) + 0.5*b/dt );

}
}

3.9 Exercises

1. A floating body of uniform cross-sectional area A and of mass density ρ and at equilibrium
displaces a volume V . Show that the period of small oscillations about the equilibrium
position is given by

τ = 2π
√
V/gA

2. Show that the critically damped solution, Eq. (3.18), is indeed the solution to the differen-
tial equation.

3. Consider an over-damped harmonic oscillator with a mass of m = 2 kg, a damping factor
b = 20 Ns/m, and a spring constant k = 32 N/m. If the initial position is x = 0.125
m, and if the initial velocity is −2.0 m/s, find and graph the motion as a function of time.
Graphically, find the time at which the mass crosses the origin.

4. Consider a particle of mass m moving in a one-dimensional potential,

V (x) = −k
x2

2
+ α

x4

4
.

(a) What is the angular frequency for small vibrations about the minimum of the poten-
tial? What is the effective spring constant?
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(b) If you add a small force F = F0 cos(ωt − ϕ), and if the particle is initially at the
minimum with zero initial velocity, find its position as a function of time.

(c) If there is a small drag force −bv, repeat (b).

5. Consider the periodic force, F (t + τ ) = F (t),

F (t) =

{
−A, −τ/2 < t < 0
+A, 0 < t < τ/2

Find the coefficients fn and gn defined in Eq. (3.47).

6. A “delta” function is a function that is zero everywhere except where the argument is zero.
At this point the function is infinite so that the area under the curve is unity. The delta
function obeys the relations ∫ b

a

dt′ δ(t′ − t0) = 1,∫ b

a

dt′ f(t′)δ(t′ − t0) = f(t0),

as long as the time t0 lies between the limits a and b. Otherwise, the integrals are zero.

(a) Show that the following function

1

π

Λ

Λ2 + x2

∣∣∣∣
Λ→0

= δ(x).

i.e. show that it is zero everywhere except the origin and that it integrates to unity.

(b) A step function, Θ(t), a.k.a. the “Theta” function or the Heaviside function, is zero
for negative arguments and is unity for positive arguments. Show that

d

dx
Θ(x − x0) = δ(x − x0).

(c) Using the definition of Fourier coefficients in Eq.s (3.45) and (3.47), show that

δ(t − t0) = −
1

τ
+

2

τ

∞∑
n=0

cos(ωn(t − t0)), ωn = 2nπ/τ.

7. Consider the complex function in the interval −τ/2 < t < τ/2,

f(t) = −
1

τ
+

2

τ

∞∑
n=0

einω(t−t0), ω = 2π/τ.

(a) Using the fact that if one integrates over the interval, −τ/2 < t < τ/2, that
∫
dt einωt =

0 for n ̸= 0, show that ∫
dtf(t) = 1.
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(b) Using the fact that
∑

n xn = 1/(1 − x), show that

f(t) = −
1

τ
+

2/τ

1 − eiω(t−t0)
.

(c) From the expression in (b), show that the real part of f(t) obeys

ℜf(t) = 0, for t ̸= t0

This shows that ℜf is a delta function and validates the result of the previous prob-
lem.

8. A particle of mass m in an undamped harmonic oscillator with angular frequency ω0 is at
rest in the bottom of the well, when it experiences a force

F (t) =


0, t < 0
G, 0 < t < τ
0, t > τ

Find x(t) for t > τ using Eq. (3.58).

9. Consider a particle of mass m in a harmonic oscillator with angular frequency ω0 and no
damping. It experiences an external force,

F (t) = f0Θ(t)e−γt.

A “Theta” function is a step function, and is zero for negative arguments and unity for
positive arguments.

(a) Find a particular solution, xp(t), assuming it is proportional to e−γt.

(b) For a particle initially at rest at the origin at t = 0, find x(t) by adding in the homoge-
nous solutions and matching the BC, determine the arbitrary constants.

(c) Use Eq. (3.57) or Eq. (3.58) to find x(t). Check that you get the same result as (b).
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4 Gravity and Central Forces

4.1 Gravity

The gravitational potential energy and forces involving two masses a and b are

Uab = −
Gmamb

|r⃗a − r⃗b|
, (4.1)

Fba = −
Gmamb

|r⃗a − r⃗b|2
r̂ab,

r̂ab =
r⃗b − r⃗a

|r⃗a − r⃗b|
.

Here G = 6.67× 10−11 Nm2/kg2, and Fba is the force on b due to a. By inspection, one can see
that the force on b due to a and the force on a due to b are equal and opposite. The net potential
energy for a large number of masses would be

U =
∑
a<b

Uab =
1

2

∑
a̸=b

Uab. (4.2)

Just like electrodynamics, one can define "fields", which for a small additional mass m are the
force per mass and the additional potential energy per mass. The gravitational field related to
the force has dimensions of force per mass, or acceleration, and can be labeled g⃗(r⃗). This is
analogous to the electric field, which is the force per charge. The potential energy per mass has
dimensions of energy per mass, but is not typically given a name. It would be analogous to the
electromagnetic potential, which is the potential energy per charge.

Because the field g⃗ obeys the same inverse square law for a point mass as the electric field does
for a point charge, the gravitational field also satisfies a version of Gauss’s law,∮

dA⃗ · g⃗ = −4πGMinside. (4.3)

Here, Minside is the net mass inside a closed area.

Gauss’s law can be understood geometrically by considering a nozzle that sprays paint in all
directions uniformly from a point source. Let B be the number of liters per minute of paint
leaving the nozzle. If the nozzle is at the center of a sphere of radius r, the paint per square
meter per minute that is deposited on some part of the sphere is

F (r) =
B

4πr2
. (4.4)

Now, let F also be assigned a direction, so that it becomes a vector pointing along the direction
of the flying paint. For any surface that surrounds the nozzle, not necessarily a sphere, one can
state that ∮

d⃗A · F⃗ = B, (4.5)
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regardless of the shape of the surface. This follows because the rate at which paint is deposited
on the surface should equal the rate at which it leaves the nozzle. The dot product ensures that
only the component of F⃗ into the surface contributes to the deposition of paint. Similarly, if F⃗
is any radial inverse-square form, such that F falls as B/(4πr2), then one can apply Eq. (4.5).
For gravitational fields, B/(4π) is replaced by GM , and one quickly “derives” Gauss’s law for
gravity, Eq. (4.3).

In electromagnetism texts, Gauss’s law is derived more formally. In that case, one begins with
one of Maxwell’s equations,

∇ · E⃗ = 4πρ, (4.6)

then one applies the divergence theorem, also known as Gauss’s theorem,∫
d3r ∇ · V⃗ =

∮
dA⃗ · V⃗ . (4.7)

For electromagnetism this give ∮
dA⃗ · E⃗ = 4πQ, (4.8)

Q =

∫
d3r ρ(r⃗). (4.9)

For gravity, the equivalent to the Maxwell equation would be

∇ · g⃗(r⃗) = −4πGρm(r⃗), (4.10)

where ρm is the mass density.

Example 4.1: Relating Force to Mass Density
Suppose that somebody has measured the gravitational acceleration somewhere in the uni-
verse. Their result was

g⃗(r⃗) = g0 exp

{
−

x2

2R2
x

}
x̂ + g0 exp

{
−

y2

2R2
y

}
ŷ,

where g0 is positive.

a) What is the mass density?

b) Is this physical?

Solution:
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a) Using Eq. (4.10),

∇ · g⃗ = −4πGρm(r⃗),

∂xgx + ∂ygy = −4πGρm(r⃗),

−
g0x

R2
x

e
− x2

2R2
x −

g0y

R2
y

e
− y2

2R2
y = −4πGρm(r⃗),

ρm(r⃗) =
g0

4πG

{
x

R2
x

e
− x2

2R2
x +

y

R2
y

e
− y2

2R2
y

}
.

b) NO!!! Mass densities must be positive!

Example 4.2: Gravitational Force Inside Earth
Consider Earth to have its mass M uniformly distributed in a sphere of radius R. Find the
magnitude of the gravitational acceleration as a function of the radius r in terms of the accel-
eration of gravity at the surface g(R). Assume r < R, i.e. you are inside the surface.
Solution: Take the ratio of Eq. (4.3) for two radii, R and r < R,

4πr2g(r)

4πR2g(R)
=

4πGMinside r

4πGMinside R

=
r3

R3

g(r) = g(R)
r

R
.

If one were to build a tunnel from one end of Earth to the other, the mass would oscillate
back and forth like a mass on a spring. In reality the interior is not of uniform density, and
the gravitational field on the surface varies due to rotation (which makes Earth bulge at the
equator), local elevation, and the composition (e.g. rock vs water) of the nearby material.

Variation of Earth’s gravitational field from
GRACE (Gravity Recovery and Climate Ex-
periment). See https://en.wikipedia.org
/wiki/Gravity_anomaly

4.2 Tidal Forces

Before discussing tidal forces, we discuss the effective force on feels in an accelerating frame. If a
particle is observed in an inertial reference frame, which we will denote with a prime, Newton’s
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third law applies

m
d2r⃗′

dt2
= F⃗ . (4.11)

Now, if we have a second coordinate system,

r⃗ = r⃗′ − r⃗0, r⃗0 =
1

2
a⃗0t

2. (4.12)

We would see that

m
d2r⃗

dt2
= F⃗ − ma⃗0. (4.13)

Here a⃗0 is the acceleration of the coordinate system. The last term acts like an additional appar-
ent force. In fact, it acts like a contribution to the gravitational force which alters the acceleration
of gravity by δg⃗ = −a⃗0. For example, if somebody is in a car with acceleration ax̂, an observer
in the frame of the car would not see their position changing relative to the seat. That observer
would think they had zero acceleration, but they would feel as if a gravitational type force was
pushing them back in the seat, opposite to the car’s acceleration.

Now, consider a spherical planet of radius r a distance D from another body of mass M . The
magnitude of the force due to M on an small object of mass δm on surface of the planet can be
calculated by performing a Taylor expansion about the center of the spherical planet.

F = −
GMδm

D2
+ 2

GMδm

D3
∆D + · · · (4.14)

If the z direction points toward the large object, ∆D can be referred to as z. If z′ is defined in
the accelerating frame of an observer moving with the center of the planet,

δm
d2z′

dt2
= F − δmA. (4.15)

Here, A is the acceleration of the observer moving with the center of the planet. Because δmA
equals the gravitational force on δm if it were located at the planet’s center, one finds a cancella-
tion between the term from the accelerating frame and the term representing the external force
evaluated at the planets center. One can then write

m
d2z′

dt2
= 2

GMδm

D3
z + other forces acting on δm. (4.16)

Here the “other” forces could represent the forces acting on δm from the spherical planet such
as the gravitational force due to the planet (not the distant body) and the normal force with the
surface. If θ is the angle w.r.t. the z axis, the effective force acting on δm is

F⃗eff ≈ 2
GMδm

D3
r cos θẑ + other forces acting on δm. (4.17)

This first force is the "tidal" force. If δm is located on the side of the planet facing the distant
object, θ = 0 and cos θ = 1, the force is in the ẑ directions, towards the distant object. If δm
were located on the opposite side of the planet, cos θ = −1 and the effective force is pushing
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away from the planet. In both locations Feff pulls objects outward from the center of the object. If
the object were covered with water, it would pull the water on the surface of the planet outwards
in these directions and distort the planet’s shape. The shape would be elliptical, stretched out
along the axis pointing toward the large mass M . The force is always along (either parallel or
antiparallel to) the ẑ direction i.e. the direction pointing toward the distant body. Thus, high tide
occurs twice per day as Earth undergoes a rotation, once when the distant object is overhead,
and once when it is overhead to an observer on the opposite side of the planet.

Example 4.3: Tidal Distortion

• Consider the Earth to be a sphere of radius R covered with water, with the gravitational
acceleration at the surface noted by g. Now assume that a distant body provides an addi-
tional constant gravitational acceleration a⃗ pointed along the z axis. Find the distortion
of the radius as a function of θ. Ignore planetary rotation and assume a << g.

Solution: Because Earth would then accelerate with a⃗, the field a⃗ would seem invisible
in the accelerating frame. To see this consider the forces fell by an object of mass δm on
the surface,

δm
d2r⃗

dt2
= F⃗other + δma⃗, (4.18)

where F⃗other are all other forces acting on δm, including any gravitational forces from
the planet. If one described the postion in the acclerating frame,

r⃗′ = r⃗ −
1

2
a⃗t2, (4.19)

the equations of motion for r⃗′ would be

d2r⃗′′

dt2
= F⃗other/δm. (4.20)

Thus, nothing in the primed frame would behave any differently that in the un-primed
frame if the constant external field didn’t exist. Thus, there is no incentive for the planet’s
surface to deform.

• Now consider that the field is no longer constant, but that instead it varies linearly with
z, i.e. a⃗ = kzẑ with |kR| << g.

Solution: The surface of the planet needs to be at constant potential (if the planet is not
accelerating). The force per mass, −kz is like a spring, and the potential per mass is
kz2/2. Otherwise water would move to a point of lower potential. Thus, the potential
energy for a sample mass δm is

V (R) + δmgh(θ) −
δm

2
kr2 cos2 θ = Constant

V (R) + δmgh(θ) −
δm

2
kR2 cos2 θ − δmkRh(θ) cos2 θ

−
δm

2
kh2(θ) cos2 θ = Constant.
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where the distance from the center of the planet is r = R + h, and the potential due to
the external field is (1/2)kz2 so that −∇U = −kz. One now needs to solve for h(θ).
Absorbing all the constant terms from both sides of the equation into one constant C,
and because both h and kR are small, we can through away terms of order h2 or kRh.
This gives

gh(θ) −
1

2
kR2 cos2 θ = C,

h(θ) =
C

g
+

1

2g
kR2 cos2 θ,

h(θ) =
1

2g
kR2(cos2 θ − 1/3).

The term with the factor of 1/3 replaced the constant and was chosen so that the average
height of the water would be zero.

Example 4.4: Tidal Forces of Moon and Sun
The Sun’s mass is 27×106 the Moon’s mass, but the Sun is 390 times further away from Earth
as the Sun. What is ratio of the tidal force of the Sun to that of the Moon.
Solution: The gravitational force due to an object M a distance D away goes as M/D2, but
the tidal force is only the difference of that force over a distance R,

Ftidal ∝
M

D3
R.

Therefore the ratio of force is

FSun′s tidal force

FMoon′s tidal force

=
Msun/D

3
sun

Mmoon/D3
moon

=
27 × 106

3903
= 0.46.

The Moon more strongly affects tides than the Sun.

4.3 Deriving Kepler’s Laws

Nicolaus Copernicus proposed the heliocentric model of planetary orbits in 1514, which was
based on circular orbits. However, by 1515 Copernicus had already made the first detailed ob-
servations of the eccentricity of Earth’s orbit, showing that it was not perfectly circular. It was
not until the turn of the next century, that Johannes Kepler in 1604, inspired by the detailed
observations of Tycho Brahe, proposed that orbits were elliptical in first of his three laws of
planetary motion. The first telescopes appeared shortly thereafter, and were greatly improved
in the coming decades, most famously by Christiaan Huygens. But, despite all this data and
empirical formulation, there was not yet any connection between astronomical behavior and
gravitational force. Isaac Newton was the first theorize that a gravitational force was responsi-
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ble for such behavior, which was classified by many as an occult idea because it involved action
at a distance, across a vacuum. Newton not only suggested the inverse-square law force, but
also showed mathematically that it would explain Kepler’s Laws. This derivation was all the
more amazing as it required fairly advanced calculus, which Newton needed to first invent.
From the publication of Copernicus’s thesis in 1514 to Newton’s publication of Principia in 1687,
173 years passed, with several decades often passing before the next major advance. The imag-
ination and genius of these accomplishments cannot be over-stated. Brahe’s observations were
performed without telescopes, and Kepler’s initial calculations were performed before decimal
points were employed. Higher level mathematics, such as calculus and differential equations,
was not applied to physics in any way, because the tools did not yet exist. In fact, the notion of
describing nature in mathematical, rather than Aristotelian, terms was a revolutionary concept,
being championed by Galileo Gallilei at the end of the 16th century. The goal of this section is
to present the derivation, in terms of calculus, showing how attractive inverse-square-law forces
lead to Kepler’s laws.

Kepler’s laws extend Copernicus’s circular orbits to include elliptical orbits. The three laws are:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals
of time.

3. The square of a planet’s orbital period is proportional to the cube of the length of the semi-
major axis of its orbit.

Kepler’s first law state that a gravitational orbit should be an ellipse with the source of the
gravitational field at one focus. Deriving this is surprisingly messy. To do this, we first use
angular momentum conservation to transform the equations of motion so that it is in terms of r
and θ instead of r and t. The overall strategy is to

1. Find equations of motion for r and t with no angle (θ) mentioned, i.e. d2r/dt2 = · · · .
Angular momentum conservation will be used, and the equation will involve the angular
momentum L.

2. Use angular momentum conservation to find an expression for θ̇ in terms of r.

3. Use the chain rule to convert the equations of motions for r, an expression involving r, ṙ
and r̈, to one involving r, dr/dθ and d2r/dθ2. This is quite complicated because the
expressions will also involve a substitution u = 1/r so that one finds an expression in
terms of u and θ.

4. Once u(θ) is found, you need to show that this can be converted to the familiar form for
an ellipse.

Our goal is to find expressions for r̈, where r is the radius. We want the expressions to involve
only r, θ and the time derivatives. We are accustomed to the usual equations for x and y,

ẍ = Fx/m, ÿ = Fy/m. (4.21)
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Next, we express r in terms of x and y, then take derivatives to find r̈,

r =
√

x2 + y2, (4.22)
ṙ = (∂xr)ẋ + (∂yr)ẏ

=
xẋ

r
+

yẏ

r
.

r̈ =
x

r
ẍ +

y

r
ÿ +

ẋ2 + ẏ2

r
−

ṙ2

r
.

Next, replace x/r with cos θ and y/r with sin θ,

r̈ = ẍ cos θ + ÿ sin θ +
ẋ2 + ẏ2

r
−

ṙ2

r
(4.23)

=
Fr

m
+

ẋ2 + ẏ2

r
−

ṙ2

r
,

where we have recognized the first two terms of the expression as representing the magnitude
of the radial force, which in our case will depend only on r. Finally, one notes that the squared
velocity is

ẋ2 + ẏ2 = v2 = ṙ2 + r2θ̇2. (4.24)

Here, we have made use of the fact that v2 is a combination of the radial velocity, ṙ and the
tangential velocity, rθ̇. This gives

r̈ =
Fr

m
+

r2θ̇2

r
. (4.25)

Finally, one can replace the term with θ̇2 by identifying the angular momentum,

L = mr2θ̇, (4.26)
(4.27)

This give the

mr̈ = Fr +
L2

mr3
(4.28)

Here, the only assumption made is that the force is radial. This also implies that angular mo-
mentum is conserved. Thus for a given trajectory, L can be treated like a constant. This means
that for the evolution of the radius, ignoring how θ depends on time, one can describe the ra-
dial motion as a simple one-dimensional problem, but with an extra force, L2/mr3. Sometimes
this is referred to as a centrifugal force, but it is not a force. Instead, it is the consequence of
considering the motion in a rotating (and therefore accelerating) frame.

Now, we switch to the particular case of an attractive inverse square force, F = −α/r2, and
show that the trajectory, r(θ), is an ellipse. To do this we transform derivatives w.r.t. time
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to derivatives w.r.t. θ using the chain rule combined with angular momentum conservation,
θ̇ = L/mr2.

ṙ =
dr

dθ
θ̇ =

dr

dθ

L

mr2
, (4.29)

r̈ =
d2r

dθ2
θ̇2 +

dr

dθ

(
d

dr

L

mr2

)
ṙ

=
d2r

dθ2

(
L

mr2

)2

− 2
dr

dθ

L

mr3
ṙ

=
d2r

dθ2

(
L

mr2

)2

−
2

r

(
dr

dθ

)2 ( L

mr2

)2

Equating the two expressions for r̈ in Eq.s (4.25) and (4.29) eliminates all the derivatives w.r.t.
time, and provides a differential equation with only derivatives w.r.t. θ,

d2r

dθ2

(
L

mr2

)2

−
2

r

(
dr

dθ

)2 ( L

mr2

)2

=
F

m
+

L2

m2r3
, (4.30)

that when solved yields the trajectory, i.e. r(θ). Up to this point the expressions work for any
radial force, not just forces that fall as 1/r2.

The trick to simplifying this differential equation for the inverse square problems is to make a
substitution, u ≡ 1/r, and rewrite the differential equation for u(θ).

r = 1/u, (4.31)
dr

dθ
= −

1

u2

du

dθ
,

d2r

dθ2
=

2

u3

(
du

dθ

)2

−
1

u2

d2u

dθ2
.

Plugging these expressions into Eq. (4.30) gives an expression in terms of u, du/dθ, and d2u/dθ2.
After some tedious algebra,

d2u

dθ2
= −u −

Fm

L2u2
. (4.32)

For the attractive inverse square law force, F = −αu2,

d2u

dθ2
= −u +

mα

L2
. (4.33)

The solution has two arbitrary constants, A and θ0,

u =
mα

L2
+ A cos(θ − θ0), (4.34)

r =
1

(mα/L2) + A cos(θ − θ0)
.

The radius will be at a minimum when θ = θ0 and at a maximum when θ = θ0+π. The constant
A is related to the eccentricity of the orbit. When A = 0 the radius is a constant r = L2/(mα),
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Figure 4.1: An ellipse with principle axes of lengths 25 and 15. For orbits, the center-of-mass is at one of
the foci.

and the motion is circular. If one solved the expression mv2/r = −α/r2 for a circular orbit,
using the substitution v = L/(mr), one would reproduce the expression r = L2/(mα).

The form describing the elliptical trajectory in Eq. (4.34) can be identified as a true ellipse with
one focus being the center of the ellipse by considering the definition of an ellipse as being the
points such that the sum of the two distances between the two foci are a constant, as illustrated
in Fig 4.1. Making that distance 2a, the distance between the two foci as 2c, and putting one
focus at the origin,

2a = r +

√
(r cos θ − 2c)2 + r2 sin2 θ, (4.35)

4a2 + r2 − 4ar = r2 + 4a2 − 4cr cos θ,

r =
a2 − c2

a + c cos θ
=

1

a/(a2 − c2) + c cos θ/(a2 − c2)
.

By inspection, this is the same form as Eq. (4.34) with a/(a2−c2) = mα/L2 and c/(a2−c2) =
A.

Showing that the orbits are ellipses, demonstrates Kepler’s First Law. The second law, that orbits
sweep out equal area in equal times is simply a statement of angular momentum conservation.
During a time ∆t, an orbit sweeps out a triangular sliver of area, ∆A = (1/2)rvθ∆t, where vθ

is the velocity in the θ̂ direction. Given that vθ = rθ̇,

∆A =
1

2
r2θ̇∆t (4.36)

=
L

2m
∆t. (4.37)
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Thus, ∆Ais the same for each time interval ∆t.

Kepler’s Third law states the relation between the orbital period and the radius,

T 2

a3
= constant for all bodies rotating around same object. (4.38)

where a is the semi-major axis of the ellipse. This can be derived, with some work, using the
relations above. First, we note that the period can be found by dividing the area of the ellipse
by the rate at which area is being swept out. This rate is given by Kepler’s second law above,
L/2m, and the area of the ellipse is πa

√
a2 − c2. This gives the period,

T =
2mπa

√
a2 − c2

L
, (4.39)

T 2 =
4m2π2a2(a2 − c2)

L2
. (4.40)

Next, one applies energy conservation, equating the energy at the apogee and perigee (furthest
and closest points of the orbit). The radii at these points are a + c and a − c respectively. At
each of those points the radial component of the velocity vanishes and the energy is composed
solely of the potential energy and the transverse kinetic energy,

Eapogee = Eperigee, (4.41)
L2

2m(a + c)2
−

GMm

a + c
=

L2

2m(a − c)
−

GMm

a − c
. (4.42)

Multiplying the entire equation by (a + c)2(a − c)2,

L2

2m

[
(a − c)2 − (a + c)2

]
= −GMm

[
(a + c)2(a − c) − (a − c)2(a + c)

]
, (4.43)

L2

2GMm2
(4ac) = 2(a2 − c2)c, (4.44)

(a2 − c2)m2

L2
=

a

GM
. (4.45)

Inserting this into equation Eq. (4.39),

T 2 =
4π2a3

GM
. (4.46)

The distance a is the semi-major axis of the ellipse. Thus, the period of planets around the same
sun all scale with a3/2. Planets orbiting heavier stars have their periods scale with M1/2. It is
straight-forward to check this relation in the limit of circular orbits, where r = a.

4.4 Centrifugal Potential/Barrier and the Effective Radial Potential

It is often useful to isolate the radial behavior of motion, ignoring the angular dependence. In
order to do that, one must account for the angular momentum. For example, if a rock is dropped
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from a distance r from the sun with zero radial velocity, it will fall toward the center of the sun.
However, if the rock has sufficent angular momentum, it can instead enter into an orbit, with
the minimum radius being determined by the angular momentum and the initial radius. Thus,
angular momentum affects the evolution of r(t). Fortunately, as will be shown below, one can
absorb all the effects of angular motion into the evolution of r(t) by adding an additional term to
the original radial potential. This term, L2/2mr2, behaves like an additional term to the poten-
tial energy and allows one to understand the radial behavior as a one-dimensional expression.
This approach makes it rather straight-forward to address numerous questions about whether
astronomical objects will collide, or whether nuclei might fuse. When solving Schrödinger’s
equation for a radial potential, the same term, but with L2/2mr2 → ℏ2ℓ(ℓ + 1)/2mr2, comes
into play when solving for radial wave-functions.

The total energy of a particle is

E = U(r) +
1

2
mv2

θ +
1

2
mṙ2 (4.47)

= U(r) +
1

2
mr2θ̇2 +

1

2
mṙ2

= U(r) +
L2

2mr2
+

1

2
mṙ2.

The second term then contributes to the energy like an additional repulsive potential. The term
is sometimes referred to as the “centrifugal potential” or the “centrifugal barrier”, even though
it is actually the kinetic energy of the angular motion. Combined with U(r), it is sometimes
referred to as the "effective" potential,

Ueff(r) = U(r) +
L2

2mr2
. (4.48)

Note that if one treats the effective potential like a real potential, one would expect to be able to
generate an effective force,

Feff = −
d

dr
U(r) −

d

dr

L2

2mr2
(4.49)

= F (r) +
L2

mr3
= F (r) + m

v2
⊥

r
,

which is indeed matches the form for mr̈ in Eq. (4.25), which includes the “centrifugal force”.

Example 4.5: Rotationally Symmetric Harmonic Oscillator Potential
Consider a particle of mass m in a 2-dimensional harmonic oscillator with potential

U =
1

2
kr2 =

1

2
k(x2 + y2).

If the orbit has angular momentum L, find
a) the radius and angular velocity of the circular orbit
b) the angular frequency of small radial perturbations
Solution:
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a) Consider the effective potential. The radius of a circular orbit is at the minimum of the
potential (where the effective force is zero).

Ueff =
1

2
kr2 +

L2

2mr2

The effective potential looks like that of a harmonic oscillator for large r, but for small r, the
centrifugal potential repels the particle from the origin. The combination of the two potentials
has a minimum for at some radius rmin.

0 = krmin −
L2

mr3
min

,

rmin =

(
L2

mk

)1/4

,

θ̇ =
L

mr2
min

=
√
k/m.

For particles at rmin with ṙ = 0, the particle does not accelerate and r stays constant, i.e.
a circular orbit. The radius of the circular orbit can be adjusted by changing the angular
momentum L.
b) Now consider small vibrations about rmin. The effective spring constant is the curvature of
the effective potential.

keff =
d2

dr2
Ueff(r)

∣∣∣∣
r=rmin

= k +
3L2

mr4
min

= 4k,

ωr =
√
keff/m = 2

√
k/m = 2θ̇.

Here, the second step used the result of the last step from part (a). Because the radius oscillates
with twice the angular frequency, the orbit has two places where r reaches a minimum in one
cycle. This differs from the inverse-square force where there is one minimum in an orbit. One
can show that the orbit for the harmonic oscillator is also elliptical, but in this case the center
of the potential is at the center of the ellipse, not at one of the foci.
The solution is also simple to write down exactly in Cartesian coordinates. The x and y equa-
tions of motion separate,

ẍ = −kx,

ÿ = −ky.

So the general solution can be expressed as

x = A cosω0t + B sinω0t,

y = C cosω0t + D sinω0t.
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With some work using double angle formulas, one can calculate

r2 = x2 + y2

= (A2 + C2) cos2(ω0t) + (B2 + D2) sin2 ω0t + (AB + CD) cos(ω0t) sin(ω0t)

= α + β cos 2ω0t + γ sin 2ω0t,

α =
A2 + B2 + C2 + D2

2
, β =

A2 − B2 + C2 − D2

2
, γ = AB + CD,

r2 = α + (β2 + γ2)1/2 cos(2ω0t − δ), δ = arctan(γ/β),

and see that the radius oscillates with frequency 2ω0. The factor of two comes because the
oscillation x = A cosω0t has two maxima for x2, one at t = 0 and one a half period later.

4.5 Stability of Orbits

The effective force can be extracted from the effective potential, Ueff . Beginning from the equa-
tions of motion, Eq. (4.30), for r,

mr̈ = F +
L2

mr3
(4.50)

= Feff

= −∂rUeff ,

Feff = −∂r

[
U(r) + (L2/2mr2)

]
.

For a circular orbit, the radius must be fixed as a function of time, so one must be at a maximum
or a minimum of the effective potential. However, if one is at a maximum of the effective po-
tential the radius will be unstable. For the attractive Coulomb force the effective potential will
be dominated by the −α/r term for large r because the centrifugal part falls off more quickly,
∼ 1/r2. At low r the centrifugal piece wins and the effective potential is repulsive. Thus, the
potential must have a minimum somewhere with negative potential. The circular orbits are then
stable to perturbation.

If one considers a potential that falls as 1/r3, the situation is reversed and the point where ∂rU
disappears will be a local maximum rather than a local minimum – see Fig. 4.2. The repulsive
centrifugal piece dominates at large r and the attractive Coulomb piece wins out at small r. The
circular orbit is then at a maximum of the effective potential and the orbits are unstable. It is the
clear that for potentials that fall as rn, that one must have n > −2 for the orbits to be stable.

Example 4.6: Linearly Growing Radial Potential
Consider a potential U(r) = βr. For a particle of mass m with angular momentum L,
(a) Find the angular frequency of a circular orbit.
(b) Find the angular frequency for small radial perturbations.
Solution:
(a) For the circular orbit you search for the position rmin where the effective potential is mini-
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r
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ff(

r)
U(r) = 1/r

U(r) = 2/r3

Veff(r) = U(r) + L2/2mr2

Figure 4.2: The effective potential is sketched for two cases, a 1/r attractive potential and a 1/r3 attractive
potential. The 1/r case has a stable minimum, whereas the circular orbit in the 1/r3 case is unstable.

mized,

∂r

{
βr +

L2

2mr2

}
= 0,

β =
L2

mr3
min

,

rmin =

(
L2

βm

)1/3

,

θ̇ =
L

mr2
min

=
β2/3

(mL)1/3

(b) Now, we can find the angular frequency of small perturbations about the circular orbit. To
do this we find the effective spring constant for the effective potential,

keff = ∂2
r Ueff |rmin

=
3L2

mr4
min

,

ω =

√
keff

m

=
β2/3

(mL)1/3

√
3.

If the two frequencies, θ̇ and ω, differ by an integer factor, the orbit’s trajectory will repeat
itself each time around. This is the case for the inverse-square force, ω = θ̇, and for the
harmonic oscillator, ω = 2θ̇. In this case, ω =

√
3θ̇, and the angles at which the maxima and

minima occur change with each orbit.
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4.6 Scattering and Cross Sections

Scattering experiments don’t measure entire trajectories. For elastic collisions, they measure the
distribution of final scattering angles at best. Most experiments use targets thin enough so that
the number of scatterings is typically zero or one. The cross section, σ, describes the cross-
sectional area for particles to scatter with an individual target atom or nucleus. Cross section
measurements form the basis for MANY fields of physics. The cross section, and the differen-
tial cross section, which describes the probability of scattering into a given angle, encapsulates
everything measurable for a collision where all that is measured is the final state, e.g. the out-
going particle had momentum p⃗f . By studying cross sections, one can infer information about
the potential interaction between the two particles. Inferring, or constraining, the potential from
the cross section is a classic inverse problem. Measuring the differential cross section, even when
done at all angles, constrains the potential, but does not necessarily determine it absolutely, as
different potentials can sometimes give identical differential cross sections. But, the constraint
becomes stronger if the cross sections are measured at multiple energies at a wide range of an-
gles.

Collisions are either elastic or inelastic. Elastic collisions are those for which the two bodies are
in the same internal state before and after the collision. In this case, the kinetic energy of the par-
ticles is the same before and after the collision. If the collision excites one of the participants into
a higher state, or transforms the particles into different species, or creates additional particles,
the collision is inelastic. The energy used to excite one of the particles into a more energetic state
is taken out of the kinetic energy. Here, we consider only elastic collisions.

Visually, one can imagine looking at a target particle, from far away, so that one sees only in
the x − y plane, with the center of the target particle at the origin. If an incoming particle
moving parallel to the z axis comes close to the particle, i.e. its x and y coordinates are not too
large, it will feel the effects of the potential and its momentum will be altered. Whereas before
it scattered, its velocity was along the z axis, or its polar angle θ was zero, after its trajectory is
altered its final velocity is in some direction θs, known as the scattering angle. If one were to
shade in the area of the x− y plane corresponding to the initial trajectories that will scatter, that
area is the total cross section.

For Coulomb forces, the total cross section is infinite because the range of the Coulomb force is
infinite, but for interactions such as the strong interaction in nuclear or particle physics, there
is no long-range force and cross-sections are finite. Even for Coulomb forces, the part of the
cross section that corresponds to a specific scattering angle, dσ/dΩ, which is a function of the
scattering angle θs is still finite.

If a particle travels through a thin target, the chance the particle scatters is Pscatt = σdN/dA,
where dN/dA is the number of scattering centers per area the particle encounters. If the density
of the target is n particles per volume, and if the thickness of the target is t, the areal density
(number of target scatterers per area) is dN/dA = nt. Because one wishes to quantify the
collisions independently of the target, experimentalists measure scattering probabilities, then
divide by the areal density to obtain cross-sections,

σ =
Pscatt

dN/dA
=

Pscatt

nt
. (4.51)

Instead of merely stating that a particle collided, one can measure the probability the particle
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scattered by a given angle. The scattering angle θs is defined so that at zero the particle is
unscattered and at θs = π the particle is scattered directly backward. Scattering angles are often
described in the center-of-mass frame, but that is a detail we will neglect for this first discussion,
where we will consider the scattering of particles moving classically under the influence of fixed
potentials U(r⃗). Because the distribution of scattering angles can be measured, one expresses
the differential cross section,

d2σ

d cos θs dϕs

, (4.52)

where ϕs is the azimuthal angle. In the usual definition of spherical coordinates, θs = 0 corre-
spondes to the ẑ direction, so the particle is initially moving in the +ẑ direction.

Usually, the literatures expresses differential cross sections as

dσ/dΩ =
dσ

d cos θsdϕs

=
1

2π

dσ

d cos θs

, (4.53)

where the last equivalency is true when the scattering does not depend on the azimuthal angle
ϕs, as is the case for spherically symmetric potentials. The “solid angle” refers to this differential
angle in coordinate space,

dΩ = d cos θsdϕs. (4.54)

The differential solid angle dΩ can be thought of as the area subtended by a measurement, dAd,
divided by r2, where r is the distance to the detector,

dAd = r2dΩ. (4.55)

With this definition dσ/dΩ is independent of the distance from the target at which one places
the detector, or the size of the detector (as long as it is small). For a small detector of area Ad,
placed a distance r from the target, the solid angle of the detector is ∆Ω = Ad/r

2.

Differential scattering cross sections are calculated by assuming a random distribution of impact
parameters b⃗. These represent the distance in the xy plane for particles moving in the z direc-
tion relative to the scattering center. Here, we consider spherically symmetric potentials, which
means that the scattering angle θs will not depend on the direction of b⃗ in the x − y plane, and
we can calculate dσ/dΩ(θs) as a function of the magnitude b = |⃗b|. An impact parameter b = 0
refers to being aimed directly at the target’s center. The impact parameter describes the trans-
verse distance from the z = 0 axis for the trajectory when it is still far away from the scattering
center and has not yet been influenced by it. The differential cross section can be expressed in
terms of b,

dσ = 2πbdb, (4.56)

which is the area of a thin ring of radius b and thickness db. In classical physics, one can calcu-
late the trajectory given the incoming kinetic energy E and the impact parameter if one knows
the mass and potential. From the trajectory, one then finds the scattering angle θs(b). The differ-
ential cross section is then

dσ

dΩ
=

1

2π

dσ

d cos θs

= b
db

d cos θs

=
b

(d/db) cos θs(b)
. (4.57)
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Typically, one would calculate cos θs and (d/db) cos θs as functions of b. This is sufficient to
plot the differential cross section as a function of θs.

The total cross section is

σtot =

∫
dΩ

dσ

dΩ
= 2π

∫
d cos θs

dσ

dΩ
. (4.58)

Even if the total cross section is infinite, e.g. Coulomb forces, one can still have a finite differential
cross section as we will see later on.

Example 4.7: Cross Section for Asteroid
An asteroid of mass m and kinetic energy E approaches a planet of radius R and mass M .
What is the cross section for the asteroid to impact the planet?
Solution:
Calculate the maximum impact parameter, bmax, for which the asteroid will hit the planet.
The total cross section for impact is σimpact = πb2max. The maximum cross-section can be
found with the help of angular momentum conservation. The asteroid’s incoming momentum
is p0 =

√
2mE and the angular momentum is L = p0b. If the asteroid just grazes the

planet, it is moving with zero radial kinetic energy at impact. Combining energy and angular
momentum conservation and having pf refer to the momentum of the asteroid at a distance
R,

p2
f

2m
−

GMm

R
= E,

pfR = p0bmax.

Here, we have exploited the fact that for a grazing trajectory, the particle is moving purely
transversely when it has radius R, thus its angular momentum is pfR. This allows one to
solve for bmax,

bmax = R
pf

p0

= R

√
2m(E + GMm/R)

√
2mE

σimpact = πR2

(
1 +

GMm/R

E

)
.

One can see that for a very high-energy asteroid, where the trajectory is nearly a straight line,
that the cross section becomes the simple geometric form, πR2.

4.7 Center-of-Mass Coordinates

Thus far, we have considered the trajectory as if the force is centered around a fixed point. For
two bodies interacting only with one another, both masses circulate around the center of mass.
One might think that solutions would become more complex when both particles move, but we
will see here that the problem can be reduced to one with a single body moving according to a
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fixed force by expressing the trajectories for r⃗1 and r⃗2 into the center-of-mass coordinate R⃗cm

and the relative coordinate r⃗,

R⃗cm ≡
m1r⃗1 + m2r⃗2

m1 + m2

, (4.59)

r⃗ ≡ r⃗1 − r⃗2.

Here, we assume the two particles interact only with one another, so F⃗12 = −F⃗21 (where F⃗ij is
the force on i due to j. The equations of motion then become

¨⃗
Rcm =

1

m1 + m2

{
m1

¨⃗r1 + m2
¨⃗r2

}
(4.60)

=
1

m1 + m2

{
F⃗12 + F⃗21

}
= 0.

¨⃗r = ¨⃗r1 − ¨⃗r2 =

(
F⃗12

m1

−
F⃗21

m2

)
(4.61)

=

(
1

m1

+
1

m2

)
F⃗12.

The first expression simply states that the center of mass coordinate R⃗cm moves at a fixed veloc-
ity. The second expression can be rewritten in terms of the reduced mass µ.

µ¨⃗r = F⃗12, (4.62)
1

µ
=

1

m1

+
1

m2

, µ =
m1m2

m1 + m2

. (4.63)

Thus, one can treat the trajectory as a one-body problem where the reduced mass is µ, and a
second trivial problem for the center of mass. The reduced mass is especially convenient when
one is considering gravitational problems because then

µr̈ = −
Gm1m2

r2
r̂ (4.64)

= −
GMµ

r2
r̂, M ≡ m1 + m2.

For the gravitational problem, the reduced mass then falls out and the trajectory depends only
on the total mass M .

The kinetic energy and momenta also have analogues in center-of-mass coordinates. The total
and relative momenta are

P⃗ ≡ p⃗1 + p⃗2 = M
˙⃗
Rcm, (4.65)

q⃗ ≡ µ ˙⃗r.

With these definitions, a little algebra shows that the kinetic energy becomes

T =
1

2
m1|v⃗1|2 +

1

2
m2|v⃗2|2 (4.66)

=
1

2
M | ˙⃗Rcm|2 +

1

2
µ| ˙⃗r|2

=
P 2

2M
+

q2

2µ
.
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The standard strategy is to transform into the center of mass frame, then treat the problem as one
of a single particle of mass µ undergoing a force F⃗12. Scattering angles can also be expressed in
this frame, then transformed into the lab frame. In practice, one sees examples in the literature
where dσ/dΩ expressed in both the “center-of-mass” and in the “laboratory” frame.

4.8 Rutherford Scattering

This refers to the calculation of dσ/dΩ due to an inverse square force, F12 = ∓α/r2 for a attrac-
tive/repulsive interaction. Rutherford compared the scattering of α particles (4He nuclei) off of
a nucleus and found the scattering angle at which the formula began to fail. This correspond-
eds to the impact parameter for which the trajectories would strike the nucleus. This provided
the first measure of the size of the atomic nucleus. At the time, the distribution of the positive
charge (the protons) was considered to be just as spread out amongst the atomic volume as the
electrons. After Rutherford’s experiment, it was clear that the radius of the nucleus tended to
be roughly 4 orders of magnitude smaller than that of the atom, which is similar to the size of a
football relative to Spartan Stadium.

θs

θ'

Figure 4.3: The incoming and outgoing angles of the trajectory are at ±θ′. They are related to the
scattering angle by 2θ′ = π + θs.

In order to calculate differential cross section, we must find how the impact parameter is re-
lated to the scattering angle. This requires analysis of the trajectory. We consider our previous
expression for the trajectory where we derived the elliptic form for the trajectory, Eq. (4.34).
For that case we considered an attractive force with the particle’s energy being negative, i.e. it
was bound. However, the same form will work for positive energy, and repulsive forces can be
considered by simple flipping the sign of α. For positive energies, the trajectories will be hyper-
bolas, rather than ellipses, with the asymptotes of the trajectories representing the directions of
the incoming and outgoing tracks. Rewriting the solution for a potential,

V (r) =
−α

r
, (4.67)
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the solution for the trajectory was given in Eq. (4.34),

r =
1

mα
L2 + A cos(θ − θ0)

, (4.68)

where A is an arbitrary constant. If α is negative, the interaction is repulsive, and by considering
θ − θ0 = π/2 one can see there will always be values of θ for which the denominator, and
therfore r, become negative. Or course, radii need to be positive. Even if α is positive, there
might still be values of θ for which r becomes negative. Once A is large enough, which will
happen if the energy is positive, the denominator will become negative for a range of θ if A >
mα/L2. The angles for which the radii are unphysical correpond to the angle that a trajectory
doesn’t reach certain angles.

Setting θ0 = 0, the asymptotic angles θ′ are those for which the denominator goes to zero,

cos θ′ = −
mα

AL2
. (4.69)

The trajectory’s point of closest approach is at θ = 0 and the two angles θ′, which have this
value of cos θ′, are the angles of the incoming and outgoing particles. From Fig. 4.3, one can see
that the scattering angle θs is given by,

2θ′ − π = θs, θ′ =
π

2
+

θs

2
, (4.70)

sin(θs/2) = − cos θ′

=
mα

AL2
.

Now that we have θs in terms of m,α,L and A, we wish to re-express L and A in terms of
the impact parameter b and the energy E. This will set us up to calculate the differential cross
section, which requires knowing db/dθs. It is easy to write the angular momentum as

L2 = p2
0b

2 = 2mEb2. (4.71)

Finding A is more complicated. To accomplish this we realize that the point of closest approach
occurs at θ = 0, so from Eq. (4.68)

1

rmin

=
mα

L2
+ A, (4.72)

A =
1

rmin

−
mα

L2
.

Next, rmin can be found in terms of the energy because at the point of closest approach the
kinetic energy is due purely to the motion perpendicular to r̂ and

E = −
α

rmin

+
L2

2mr2
min

. (4.73)

One can solve the quadratic equation for 1/rmin,

1

rmin

=
mα

L2
+
√
(mα/L2)2 + 2mE/L2. (4.74)
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We can plug the expression for rmin into the expression for A, Eq. (4.72),

A =
√

(mα/L2)2 + 2mE/L2 =
√
(α2/(4E2b4) + 1/b2 (4.75)

Finally, we insert the expression for A into that for the scattering angle, Eq. (4.70),

sin(θs/2) =
mα

AL2
(4.76)

=
a

√
a2 + b2

, a ≡
α

2E

The differential cross section can now be found by differentiating the expression for θs with b,

1

2
cos(θs/2)dθs =

ab db

(a2 + b2)3/2
=

bdb

a2
sin3(θs/2), (4.77)

dσ = 2πbdb =
πa2

sin3(θs/2)
cos(θs/2)dθs

=
πa2

2 sin4(θs/2)
sin θsdθs

dσ

d cos θs

=
πa2

2 sin4(θs/2)
,

dσ

dΩ
=

a2

4 sin4(θs/2)
.

where a = α/2E. This is the Rutherford formula for the differential cross section. It diverges
as θs → 0 because scatterings with arbitrarily large impact parameters still scatter to arbitrarily
small scattering angles. The integral,

σtot =

∫
dΩ

dσ

dΩ
= 2π

∫
sin θsdθs

a2

4 sin4(θs/2)
(4.78)

is then infinite. The expression for dσ/dΩ is the same whether the interaction is positive or
negative.

Example 4.8: Nuclear Radius from Rutherford Scattering
Consider a particle of mass m and charge z with kinetic energy E (Let it be the center-of-mass
energy) incident on a heavy nucleus of mass M and charge Z and radius R. Find the angle
at which the Rutherford scattering formula breaks down.
Solution:
Let α = Zze2/(4πϵ0). The scattering angle in Eq. (4.76) is

sin(θs/2) =
a

√
a2 + b2

, a ≡
α

2E
.

The impact parameter b for which the point of closest approach equals R can be found by
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using angular momentum conservation,

p0b = b
√
2mE = Rpf = R

√
2m(E − α/R),

b = R

√
2m(E − α/R)

√
2mE

= R

√
1 −

α

ER
.

Putting these together

θs = 2 sin−1

{
a√

a2 + R2(1 − α/(RE))

}
, a =

α

2E
.

It was from this departure of the experimentally measured dσ/dΩ from the Rutherford for-
mula that allowed Rutherford to infer the radius of the gold nucleus, R.

4.9 Exercises

1. Approximate Earth as a solid sphere of uniform density and radius R = 6360 km. Sup-
pose you drill a tunnel from the north pole directly to another point on the surface de-
scribed by a polar angle θ relative to the north pole. Drop a mass into the hole and let
it slide through tunnel without friction. Find the frequency f with which the mass oscil-
lates back and forth. Ignore Earth’s rotation. Compare this to the frequency of a low-lying
circular orbit.

2. Consider the gravitational field of the moon acting on the Earth.

(a) Calculate the term k in the expansion

mgmoon = mg0 + kz + · · · ,
where z is measured relative to Earth’s center and is measured along the axis connect-
ing the Earth and moon and m is the mass of some small object. Give your answer in
terms of the distance between the moon and the earth, Rm and the mass of the moon
Mm and the object’s mass m.

(b) Calculate the difference between the height of the oceans at maximum and minimum
tides. Express your answer in terms of the quantities above, plus Earth’s radius, Re.
Then give you answer in meters.

3. Consider an ellipse defined by the sum of the distances from the two foci being 2D, which
expressed in a Cartesian coordinates with the middle of the ellipse being at the origin
becomes √

(x − a)2 + y2 +
√

(x + a)2 + y2 = 2D.

Here the two foci are at (a, 0) and (−a, 0). Show that this form can be written as

x2

D2
+

y2

D2 − a2
= 1.
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4. Consider a particle in an attractive inverse-square potential, U(r) = −α/r, where the
point of closest approach is rmin and the total energy of the particle is E. Find the parame-
ter A describing the trajectory in Eq. (4.34). Hint: Use the fact that at rmin there is no radial
kinetic energy and E = −α/rmin + L2/2mr2

min.

5. Consider the effective potential for an attractive inverse-square-law force, F = −α/r2.
Consider a particle of mass m with angular momentum L.

(a) Find the radius of a circular orbit by solving for the position of the minimum of the
effective potential.

(b) What is the angular frequency, θ̇, of the orbit? Solve this by setting F = mθ̇2r.

(c) Find the effective spring constant for the particle at the minimum.

(d) What is the angular frequency for small vibrations about the minimum? How does
this compare with the answer to (b)?

6. Consider a particle of mass m moving in a potential

U = α ln(r/a).

(a) If the particle is moving in a circular orbit of radius R, find the angular frequency θ̇.
Solve this by setting F = −mθ̇2r (force and acceleration point inward).

(b) Express the angular momentum L in terms of α, m and R. Also express R in terms
of L, α and m.

(c) Sketch the effective radial potential, Veff(r), for a particle with angular momentum L.
(No longer necessarily moving in a circular orbit.)

(d) Find the position of the minimum of Veff in terms of L, α and m, then compare to the
result of (b).

(e) What is the effective spring constant for a particle at the minimum of Veff? Express
your answer in terms of L, m and α.

(f) What is the angular frequency, ω, for small oscillations of r about the Rmin? Express
your answer in terms of θ̇ from part (a).

7. Consider a particle of mass m in an attractive potential, U(r) = −α/r, with angular
momentum L with just the right energy so that

A = mα/L2

where A comes from the expression

r =
1

(mα/L2) + A cos θ
.

The trajectory can then be rewritten as

r =
2r0

1 + cos θ
, r0 =

L2

2mα
.
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(a) Show that for this case the total energy E approaches zero.

(b) Write this trajectory in a more recognizable parabolic form,

x = x0 −
y2

R
.

I.e., express x0 and R in terms of r0.

(c) Explain how a particle with zero energy can have its trajectory not go through the
origin.

(d) What is the scattering angle for this trajectory?

8. Show that if one transforms to a reference frame where the total momentum is zero, p⃗1 =
−p⃗2, that the relative momentum q⃗ corresponds to either p⃗1 or −p⃗2. This means that in
this frame the magnitude of q⃗ is one half the magnitude of p⃗1 − p⃗2.

9. Given the center of mass coordinates R⃗ and r⃗ for particles of mass m1 and m2, find the
coordinates r⃗1 and r⃗2 in terms of the masses, R⃗ and r⃗.

10. Consider two particles of identical mass scattering at an angle θcm in the center of mass.

(a) In a frame where one is the target (initially at rest) and one is the projectile, find the
scattering angle in the lab frame, θ, in terms of θcm.

(b) Express dσ/d cos θ in terms of dσ/d cos θcm. I.e., find the Jacobian, d cos θcm/d cos θ.

11. Assume you are scattering alpha particles (He-4 nuclei Z = 2, A = 4) off of a gold target
(Z = 79, A = 197). If the radius of the nucleus is 7.5 × 10−15 meters, and if the energy
of the beam is 38 MeV,

(a) What is the total cross section for having a nuclear collision? Give the answer in
millibarns, 1 mb= 10−31 m2.

(b) Find the scattering angle (in degrees) at which the Rutherford differential cross section
formula breaks down?

12. A point particle is fired at a spherical target of
radius R. The particle bounces off the target
elastically with scattering angle θs. The angle
ϕ in the figure is only meant to show that for
a plane tangent to the surface, the angles rel-
ative to the surface are equal for the incoming
and outgoing trajectories.

Φ

Φ

θs

R

b
ϕ

ϕ
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(a) Find the differential cross section dσ/dΩ = (1/2π)(dσ/d cos θs).

(b) Integrate dσ/dΩ to obtain the total cross section.
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5 Rotating Coordinate Systems

5.1 Accelerating Frames

Here we again consider the effect of uniformly accelerating reference frames. If a particle is
observed in an inertial reference frame, which we will denote with a prime, Newton’s third law
applies

m
d2r⃗′

dt2
= F⃗ . (5.1)

Now, if we have a second coordinate system,

r⃗ = r⃗′ − r⃗0, r⃗0 =
1

2
a⃗0t

2. (5.2)

We would see that

m
d2r⃗

dt2
= F⃗ − ma⃗0. (5.3)

Here a⃗0 is the acceleration of the coordinate system. The last term acts like an additional appar-
ent force. In fact, it acts like a contribution to the gravitational force which alters the acceleration
of gravity by δg⃗ = −a⃗0.

5.2 Rotating Frames

If you are on Earth’s surface and if your reference frame is fixed with the surface, this is an
example of an accelerating frame, where the acceleration is ω2r⊥, where r⊥ ≡

√
x2 + y2, and ω

is the angular velocity of Earth’s rotation. The acceleration is inward toward the axis of rotation,
so the additional contribution to the apparent acceleration of gravity is outward in the x − y
plane. In contrast the usual g⃗ is radially inward pointing toward the origin.

In the rotating coordinate system (not an inertial frame), motion is determined by the apparent
force and one can define effective potentials. In addition to the normal gravitational potential
energy, there is a contribution to the effective potential,

δUeff = −
m

2
ω2r2

⊥ = −
m

2
r2ω2 sin2 θ, (5.4)

where θ is the polar angle, measured from the north pole. If the true gravitational force can be
considered as originating from a point in Earth’s center, the net effective potential for a mass m
near Earth’s surface could be

Ueff = mgh − m
1

2
ω2(R + h)2 sin2 θ. (5.5)

Example 5.1: Ellipticity of Earth’s Shape
How much wider is Earth at the equator than the north-south distance between the poles
assuming that the gravitational field above the surface can be approximated by that of a point
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mass at Earth’s center.
Solution: The surface of the ocean must be at constant effective potential for a sample mass
m. This means that if h now refers to the height of the water

mg[h(θ = π/2) − h(θ = 0)] =
m

2
ω2(R + h)2.

Because R >> h, one can approximate R + h → R on the right-hand side, thus

h(θ = π) − h(θ = 0) =
ω2R2

2g
.

This come out a bit less than 11 km, or a difference of near 22 km for the diameter of the Earth
in the equatorial plane compared to a diameter between the poles. In reality, the difference is
approximately 41 km. The discrepancy comes from the assumption that the true gravitational
force can be treated as if it came from a point at Earth’s center. This would be true if the dis-
tribution of mass was radially symmetric. However, Earth’s center is molten and the rotation
distorts the mass distribution. Remarkably this effect nearly doubles the elliptic distortion of
Earth’s shape. Due to this distortion, the top of Mount Everest is not the furthest point from
the center of the Earth. That belongs to the top of a volcano, Chimborazo, in Equador, which
is one degree in latitude below the Equator. Chimborazo is about 8500 ft lower than Everest
when measured relative to sea level, but is 7700 feet further from the center of the Earth.

5.3 Coriolis Force

Consider some vector A⃗ according to an observer in a frame rotating about the z axis with
angular velocity ω⃗ = ωẑ. To an observer in the laboratory frame (the primed frame) the vector
will change even if the vector appears fixed to the rotating observer. For a rotation of ∆θ = ω∆t,
the change of the vector due to the rotation is

∆A⃗′ = ω⃗ × A⃗∆t. (5.6)

If one includes the fact that A, the vector measured in the rotating frame, might be changing as
a function of time,

∆A⃗′ = ∆A⃗ + ω⃗ × A⃗∆t, (5.7)
d

dt
A⃗′ =

d

dt
A⃗ + ω⃗ × A⃗.

If the vector happens to be the position r⃗,

˙⃗r′ = v⃗′ = v⃗ + ω⃗ × r⃗. (5.8)
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Here, the first term on the r.h.s. corresponds to the vector r⃗ not being fixed, but changing with
time, ˙⃗r = v⃗. One can now use v⃗′ = v⃗ + ω⃗ × r⃗ in place of A⃗ in Eq. (5.7), and see

˙⃗v′ =
d

dt
(v⃗ + ω⃗ × r⃗) + ω⃗ × (v⃗ + ω⃗ × r⃗) (5.9)

= ˙⃗v + ω⃗ × ˙⃗r + ω⃗ × (v⃗ + ω⃗ × r⃗)

= ˙⃗v + 2ω⃗ × v⃗ + ω⃗ × (ω⃗ × r⃗).

Because ˙⃗v′ is F⃗ /m,

F⃗ = m {a⃗ + 2ω⃗ × v⃗ + ω⃗ × (ω⃗ × r⃗)} , (5.10)

ma⃗ = F⃗ − 2mω⃗ × v⃗ − mω⃗ × (ω⃗ × r⃗).

The extra terms on the right behave like additional forces. Like gravitational forces, they are
proportional to the mass, so the mass cancels for many problems.

The last term, −mω⃗ × (ω⃗ × r⃗), represents the centrifugal force. Using the vector identity,
A⃗ × (B⃗ × C⃗) = B⃗(A⃗ · C⃗) − C⃗(A⃗ · B⃗),

−ω⃗ × (ω⃗ × r⃗) = ω2r⃗ + (ω · r⃗)ω⃗. (5.11)

If ω⃗ is in the z direction,
−ω⃗ × (ω⃗ × r⃗) = ω2(xx̂ + yŷ). (5.12)

The centrifugal force points outward in the x − y plane, and its magnitude is mω2r⊥, where
r⊥ =

√
x2 + y2.

The second term is Eq. (5.10) represents the Coriolis force. It does not enter problems like the
shape of the Earth above because in that case the water was not moving relative to the rotating
frame. Once an object is moving in a rotating frame, the particle is no longer being described in
a single accelerating frame because at each point the acceleration is −ω2r⃗.

Example 5.2: Coriolis Force on Dropped Ball
A ball is dropped from a height h = 500m above Minneapolis. Due to the Coriolis force, it is
deflected by an amount δx and δy. Find the deflection. Ignore the centrifugal terms.
Solution: The equations of motion are:

dvx

dt
= −2(ωyvz − ωzvy),

dvy

dt
= −2(ωzvx − ωxvz),

dvz

dt
= −g − 2(ωxvy − ωyvx),

ωz = ω cos θ, ωy = ω sin θ, ωx = 0.

Here the coordinate system is x̂ points east, ŷ points north and ẑ points upward.
One can now ignore all the Coriolis terms on the right-hand sides except for those with vz.

79



PHY 321 5 ROTATING COORDINATE SYSTEMS

The other terms will all be doubly small. One can also throw out terms with ωx. This gives

dvx

dt
≈ −2ωvz sin θ,

dvy

dt
≈ 0,

dvz

dt
≈ −g.

There will be no significant deflection in the y direction, δy = 0, but in the x direction one
can substitute vz = −gt above,

vx ≈
∫ t

0

dt′ 2ωgt′ sin θ = ωgt2 sin θ,

δx ≈
∫ t

0

dt′ vx(t
′) =

gω sin θt3

3
.

One can find the deflections by using h = 1
2
gt2, to find the time, and using the all-knowing

internet to see that the latitude of Minneapolis is 44.6◦ or θ = 45.4◦.

t =
√

2h/g = 10.1 s,

ω =
2π

3600 · 24 s
= 7.27 × 10−5 s−1,

δx = 17.4 cm (east).

5.4 The Foucault Pendulum

The Foucault Pendulum is simply a regular pendulum moving in both horizontal directions, and
with the Coriolis force included. In this case,

m¨⃗r = T⃗ + mg⃗ − 2mΩ⃗ × v⃗,

as the centrifugal force term is absorbed into the definition of g⃗. The magnitude of the tension,
T⃗ , is considered constant because we consider only small oscillations. Then T ≈ mg, and the
components, using x̂, ŷ to correspond to east and north respectively, are

Tx = −mgx/L, Ty = −mgy/L.

If Ω is the rotation of the earth, and if θ is the polar angle, π−lattitude,

ẍ = −gx/L + 2ẏΩz,

ÿ = −gy/L − 2ẋΩz.

Here we have used the fact that the oscillations are sufficiently small so we can ignore vz. Using
ω0 ≡

√
k/m,

ẍ − 2Ωzẏ + ω2
0x = 0

ÿ + 2Ωzẋ + ω2
0y = 0,
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where Ωz = |Ω⃗| cos θ, with θ being the polar angle (zero at the north pole). The terms linear
in time derivatives are what make life difficult. This will be solved with a trick. We will incor-
porate both differential equations into a single complex equation where the first/second are the
real/imaginary parts.

η ≡ x + iy,

η̈ + 2iΩzη̇ + ω2
0η = 0.

Now, we guess at a form for the solutions, η(t) = e−iαt, which turns the differential equation
into

−α2 + 2Ωzα + ω2
0 = 0,

α = Ωz ±
√

Ω2
z + ω2

0,

≈ Ωz ± ω0.

The solution with two arbitrary constants is then

η = e−iΩzt
[
C1e

iω0t + C2e
−iω0t

]
.

Here, C1 and C2 are complex, so they actually represent four arbitrary numbers. These four
numbers should be fixed by the four initial conditions, i.e. x(t = 0), ẋ(t = 0), y(t = 0) and
ẏ(t = 0). With some lengthy algebra, one can rewrite the expression as

η = e−iΩzt [A cos(ω0t + ϕA) + iB cos(ω0t + ϕB)] . (5.13)

Here, the four coefficients are represented by the two real arbitrary real amplitudes, A and B,
and two arbitrary phases, ϕA and ϕB. For an initial condition where y = 0 at t = 0, one can
see that B = 0. This then gives

η(t) = Ae−iΩzt cos(ω0t + γ)

= A cosΩzt cos(ω0t + γ) + iA sinΩzt cos(ω0t + γ).

Translating into x and y,

x = A cosΩzt cos(ω0t + γ), (5.14)
y = A sinΩzt cos(ω0t + γ).

Assuming the pendulum’s frequency is much higher than Earth’s rotational frequency, ω0 >>
Ωz, one can see that the plane of the pendulum simply precesses with angular velocity Ωz.
This means that in this limit the pendulum oscillates only in the x-direction with frequency
many times before the phase Ωzt becomes noticeable. Eventually, when Ωzt = π/2, the mo-
tion is along the y-direction. If you were at the north pole, the motion would switch from the
x-direction to the y direction every 6 hours. Away from the north pole, Ωz ̸= |Ω⃗| and the pre-
cession frequency is less. At the equator it does not precess at all. If one were to repeat for the
solutions where A = 0 and B ̸= 0 in Eq. (5.13), one would look at motions that started in
the y-direction, then precessed toward the −x direction. Linear combinations of the two sets
of solutions give pendulum motions that resemble ellipses rather than simple back-and-forth
motion.
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5.5 Exercises

1. Consider a pail of water spinning about a vertical axis at the center of the pail with fre-
quency ω. Find the height of the water (within a constant) as a function the radius r⊥ from
the axis of rotation. Use the concept of a centrifugal potential in the rotating frame.

2. A high-speed cannon shoots a projectile with an initial velocity of 1000 m/s in the east
direction. The cannon is situated in Minneapolis (latitude of 45 degrees) The projectile
velocity is nearly horizontal and it hits the ground after a distance x = 3000 m. Find the
alteration of the point of impact in the north-south (y) direction due to the Coriolis force.
Assume the effect is small so that you can approximate the eastward (x) component of the
velocity as being constant. Be sure to indicate whether the deflection is north or south.

3. Someone wishes to use a Foucault pendulum as a crude clock. If the person lives in Min-
neapolis (latitude of 45◦), how much time will pass between having the pendulum swing-
ing in the east-west direction until it swings in the north-south direction.
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6 Lagrangians and the Calculus of Variations

6.1 Calculus of Variations and the Euler-Lagrange Equation

The usual minimization problem one faces involves taking a function J(y), then finding the
single value y for which J is either a maximum or minimum. In multivariate calculus one
also learns to solve problems where you minimize for multiple variables, J(y1, y2, · · · yn), and
finding the point (y1 · · · yn) in n−dimensional space that maximizes or minimizes the function.
Here, we consider what seems to be a much more ambitious problem. Imagine you have a
function J(y(x), y′(x);x), and you wish to find the extrema for an infinite number of values of
y, i.e. you vary y at each point x. The function J will not only depend on y at each point x, but
also on the slope at each point, plus a possible additional dependence on x. Note we are NOT
finding an optimum value of x, we are finding the set of optimum values of y at each point x,
or equivalently, finding the function y(x).

One treats the function y(x) as being unknown while minimizing

J =

∫ x2

x1

dx f{y(x), y′(x);x}.

Thus, we are minimizing J with respect to an infinite number of values of y(xi) at points xi.
As an additional criteria, we will assume that y(x1) and y(x2) are fixed, which means we will
only consider variations of y between the boundaries. The dependence on the derivative, y′ =
dy/dx, is crucial because otherwise the solution would involve simply finding the one value of
y that minimized f , and y(x) would equal a constant if there were no explicit x dependence.
Furthermore, y wouldn’t need to be continuous at the boundary.

The Euler equation is a differential equation for y(x), that when solved, provides the required
solution. For an extrema,

δJ =

∫ x2

x1

dx

{
∂f

∂y
δy(x) +

∂f

∂y′
δy′(x)

}
= 0. (6.1)

For ANY small δy(x) at any point x, the change should be zero if one is at an optimum function
y(x). Integrating the second term by parts,

δJ =

∫ x2

x1

dx

{
∂f

∂y
−

d

dx

(
∂f

∂y′

)}
δy(x) (6.2)

+
∂f

∂y′
δy

∣∣∣∣
x2

−
∂f

∂y′
δy

∣∣∣∣
x1

= 0.

Because y is not allowed to vary at the endpoints, δy(x1) = δy(x2) = 0, the middle line can
be ignored. Also, this relation must hold for ANY δy, so one can write the Euler equations (or
sometimes called the Euler Lagrange equations)

∂f

∂y
=

d

dx

∂f

∂y′
. (6.3)
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This will yield a differential equations for y. Combined with the boundary conditions,

y(x1) = y1, y(x2) = y2, (6.4)

one can now solve the differential equations for y. Because f is only a function of f ′, not f ′′ or
f ′′′, the d/dx in Euler Lagrange equation can lead to terms involving f ′′, but not f ′′′. Thus, the
equation will be a second-order differential equation (not a linear equation usually), and the two
boundary conditions are sufficient to determine the entire function y(x).

Example 6.1: Bead on a Wire
Consider a particle constrained to move along a path (like a bead moving without friction on
a wire) and you need to design a path from x = y = 0 to some final point xf , yf . Assume
there is a constant force in the x direction, Fx = mg. Design the path so that the time the
bead travels is a minimum.
Solution: The net time is

T =

∫
dℓ

v
=

∫ xf

0

dx

√
1 + y′2
√
2gx

= minimum.

Here we made use of the fact that dℓ =
√
dx2 + dy2 and that the velocity is determined by

KE = mv2/2 = mgx. The Euler equations can be applied if you first define the function as

f(y, y′;x) =

√
1 + y′2
√
x

.

The equations are then
d

dx

∂f

∂y′
= 0.

The simplification ensued from f not having any dependence on y. Immediately, one sees that
(∂/∂y′)f is a constant because its derivative vanishes. This yields the differential equation

∂

∂y′
f =

y′

x1/2(1 + y′2)1/2

= (2a)−1/2,

because ∂f/∂y′ must be a constant. With some foresight we label (2a)−1/2. One can now
solve for y′,

(y′)2 = 2ax(1 + y′2)

y′ =

√
x

2a − x
,

y(x) =

∫ x

0

dx′

√
x′

√
2a − x′

=

∫ x

0

dx′ x′dx′
√
2ax′ − x′2

=
1

2

∫ x

0

dx
(2x′ − 2a)

(2ax′ − x′2)1/2
+ a

∫ x

0

dx′
√
2ax′ − x′2

=
−1

2

∫ 2ax−x2

0

du
√
u

+ a

∫ x

0

dx′√
a2 − (x′ − a)2

= −
√

2ax − x2 + a cos−1(1 − x/a). (6.5)
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Figure 6.1: A brachiostone curve from Eq.
(6.5) is plotted. The parameter a was ad-
justed so that the curve satisfied the bound-
ary condition to intersect the target value
(star) where y(x = 20) = 10.

This turns out to be the equation for a cycloid or a brachiostone. If you rolled a wheel of radius
a down the y axis and followed a point on the rim, it would trace out a cycloid. Here, the
constant a must be chosen to match the boundary condition, y2 = y(x2). Figure 6.1 displays
this shape with (xf , yf) = (20, 10). The parameter a was adjusted in Eq. (6.5) so that the
curve intersected the point as shown in the figure. You can see the textbook for more details,
plus you get a chance to work with cycloids in the exercises at the end of this chapter.

6.2 Auxiliary Constraints

Sometimes an auxiliary constraint is added to the problem (beyond fixing the end poits y1 and
y2). Just ahead, we will work on the example of a hanging chain. The shape of the curve min-
imizes the potential energy, under the constraint of a fixed length of chain. Before presenting
such an example we first review the method of Lagrange multipliers as a method for finding
minima or maxima under constraints.

Imagine a function f(x1, x2 · · ·xn) for which you wish to find the minima. Additionally, you
are given a constraint

C(x1 · · ·xn) = 0 (6.6)

The usual condition for a a minimum is

∂f

∂xi

= 0, or∇f = 0. (6.7)

which would be n equations for the n variables. The gradient of a scalar is a vector, so you
should think of ∇ as ∇⃗. However, the solution will likely not satisfy the constraint, i.e. the point
at which f(x1 · · ·xn) has an extrema, may not be a point where C(x1 · · ·xn) = 0.

A necessary condition for the solution is that

∇f · ϵ⃗ = 0, (6.8)
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for any infinitesimal vector ϵ⃗ if ϵ⃗ satisfies the condition

δC = ∇C · ϵ⃗ = 0. (6.9)

That is to say if I take a small step in a direction that doesn’t change the constraint, then f must
not change if it is an extrema. Not changing the constraint implies the step is orthogonal to ∇C.
As there are n dimensions of x, the vector ∇C defines one direction, and ϵ⃗ can be in any of the
n−1 directions orthogonal to ∇C. If ∇f · ϵ⃗ = 0 for ANY of the n−1 directions of ϵ⃗ orthogonal
to ∇C, then

∇f || ∇C. (6.10)

Because the two vectors are parallel you can say there must exist some constant λ such that

∇(f − λC) = 0. (6.11)

Here, λ is known as a Lagrange multiplier. Satisfying Eq. (6.11) is a necessary, but not a sufficient
condition. One could add a constant to the constraint and the gradient would not change. One
must find the correct value of λ that satisfies the constraint C = 0, rather than C = some other
constant. The strategy is then to solve Eq. (6.11) then adjust λ until one finds the x1 · · ·xn that
gives C(x1 · · ·xn) = 0.

The method of Lagrange multipliers is counter-intuitive to one’s intuition to use the constraint
to reduce the dimensionality of the problem. Normally, minimizing a function of n variables,
leads to n equations and n unknowns. A constraint could be used, by substitution, to replace
the n variables with n−1 variables. Instead, we add an unknown parameter, λ, and change the
equation to n+1 equations with n+1 unknowns, with the extra unknown being the Lagrange
multiplier λ. Often, it is rather easy to solve for x1 · · ·xn. Then one is left with the usually
difficult problem of finding λ, often requiring the solution of a transcendental equation.

Example 6.2: Lagrange Multiplier Practice
As an example of using Lagrange multipliers for a standard optimization formula we attempt
to maximize the following function,

F (x1 · · ·xn) = −
n∑

i=1

xi ln(xi),

with respect to the n variables xi. With no constraints, each xi would maximize the function
for

d

dxj

[
−
∑
i

xi ln(xi)

]
= 0

− ln(xj) − 1 = 0, xj = e−1.

Now, we repeat the problem but with two constraints,∑
i

xi = 1 ,
∑
i

xiϵi = E.

Here, ϵi and E are fixed constants. We go forward by finding the extrema for

G(x1 · · ·xn) = F − α
∑
i

xi − β
∑
i

ϵixi =
∑
i

{−xi ln(xi) − αxi − βϵixi} .
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There are two Lagrange multipliers, α and β, corresponding to the two constraints. One then
solves for the extrema

d

dxj

G = 0

= − ln(xj) − 1 − α − βϵj,

xj = exp {−1 − α − βϵj} .

For any given α and β this provides a solution for constraining
∑

i xi and
∑

i ϵixi to some
values, just not the values of unity and E that you wish. One would then have to search for
the correct values by adjusting α and β until the constraint are actually matched by solving a
transcendental equation. Although this can be complicated, it is certainly less expensive than
searching over all N values of xi. This particular example corresponds to maximizing the
entropy for a system, S = −

∑
i xi ln(xi), where xi is the probability of the system being in

a particular discrete level i that has energy ϵi. One wishes to maximize the entropy subject
to the constraints that the probabilities sum to unity and the average energy has some given
value. The result that xi ∼ e−βϵi demonstrates the origin of the Boltzmann factor, with the
inverse temperature β = 1/T .

Lagrange multipliers also assist with the Euler-Lagrange equation. If one breaks an interval
x1 < x < x2 into a large number n → ∞ points separated by dx, the Euler-Lagrange equation
involves finding the n values yi at each point so that

∑
i dxf

{
yi, y

′
i = (yi+1 − yi−1)/(2dx)

}
is maximized for some given function f . If an additional auxiliary constraint is added, also some
function of the n values yi, one can use the method of Lagrange multipliers. In the constraint
can also be written as some function of C(yi, y

′
i), then one simply adds a term λC(y, y′) to the

function f and uses the Euler-Lagrange equation to find the extrema of.

J =

∫ x2

x1

dx f {y(x), y′(x), x} − λC {y(x), y′(x), x} , (6.12)

the one difference being that

f {y(x), y′(x), x} → f {y(x), y′(x), x} − λC {y(x), y′(x), x} (6.13)

in Eq. (6.3).

Example 6.3: Hanging Chain
Consider a chain of length L and mass per unit length κ that hangs from point x = 0, y = 0
to point xf , yf . The shape must minimize the potential energy. Find general expressions for
the shape in terms of three constants which must be chosen to match y(0) = 0, y(xf) = yf

and the fixed length. Equivalently, one finds the function y(x) that provides an extrema for
the integral,
Solution: One must minimize∫

dℓ κgy − λ

∫
dℓ =

∫ xf

0

dx
√

1 + y′2κgy − λ

∫ xf

0

dx
√
1 + y′2.

Here λ is the Lagrange multiplier associated with constraining the length of the chain. The
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constrained length L appears nowhere in the expression. Instead, one solves for form of the
answer, then adjusts λ to give the correct length. For the purposes of the Euler-Lagrange
minimization one considers the function

f(y, y′;x) = κgy
√

1 + y′2 − λ
√

1 + y′2. (6.14)

Because λ is an unknown constant and because minimizing a function multiplied by a con-
stant is the same as minimizing the function, we can equivlently minimize the integral using
the function

f̃(y, y′;x) = y
√

1 + y′2 − λ̃
√

1 + y′2, (6.15)

λ̃ ≡
λ

κg
.

The Euler-Lagrange equations then become

d

dx

{
y′√

1 + y′2
y − λ̃

y′√
1 + y′2

}
=

√
1 + y′2.

Here, we will guess at the form of the solution,

y′ = sinh[(x − x0)/a], y = a cosh[(x − x0)/a] + y0.

Plugging into the Euler-Lagange equations,

d

dx

{
(a cosh[(x − x0)/a] + y0)

sinh[(x − x0)/a]

cosh[(x − x0)/a]
− λ̃

sinh[(x − x0)/a]

cosh[(x − x0)/a]

}

= cosh[(x − x0)/a],

d

dx

{
(y0 − λ̃) tanh[(x − x0)/a]

}
= 0.

This solution works if y0 = λ̃. So the general form of the solution is

y = λ̃ + a cosh[(x − x0)/a].

One must find λ̃, x0 and a to satisfy three conditions, y(x = 0) = 0, y(x = xf) = yf

and that the length is L. For a hanging chain a is positive. A solution with negative a would
represent a maximum of the potential energy. A notable property of the solution is that once
you define the length and the end-point positions y1 and y2, the solution does not depend
on κ or g. Thus, the shape of the chain would be the same if you took it to the moon. These
solutions are known as catenaries, http://en.wikipedia.org/wiki/Catenary.
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6.3 Lagrangians

Lagrangians represent a powerful method for solving problems that would be nearly impossible
by direct application of Newton’s third law, F⃗ = ma⃗. The method works well for problems
where a system is well described by a few generalized coordinates. A generalized coordinate might
be the angle describing the position of a pendulum. This one angle takes the place of using x
and y to describe the position of the pendulum, then applying a clumsy constraint.

The Lagrangian equations of motion can be derived from the principle of least action, where the
action S is defined as

S =

∫
dt L(q, q̇, t), (6.16)

where q is some coordinate that describes the orientation of a system and the Lagrangian L is
defined as

L = T − U, (6.17)

the difference of the kinetic and potential energies. Minimizing the action through the Euler-
Lagrange equations gives the Lagrangian equations of motion,

d

dt

∂L

∂q̇
=

∂L

∂q
. (6.18)

We begin with two simple examples, neither of which gains from the Lagrangian approach.

Example 6.4: Lagrangian Treatment of a Spring
Consider a particle of mass m connected to a spring with stiffness k. Derive the Lagrangian
equations of motion.
Solution:

L =
1

2
mẋ2 −

1

2
kx2,

d

dt

∂L

∂ẋ
=

∂L

∂x
,

mẍ = −kx.

Example 6.5: Eq.s of Motion for Pendulum
Derive the Lagrangian equations of motion for a pendulum of mass m and length ℓ.

L =
m

2
ℓ2θ̇2 − mgℓ(1 − cos θ),

d

dt

∂L

∂θ̇
=

∂L

∂θ
,

mℓ2θ̈ = −mgℓ sin θ,

θ̈ = −
g

ℓ
sin θ,

θ̈ ≈ −
g

ℓ
θ.
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6.4 Proving Lagrange’s Equations of Motion from Newton’s Laws

Lagrange’s equations of motion can only be applied for the following conditions:

1. The potential energy is a function of the generalized coordinates qi, but not of q̇i.

2. The relation between the original coordinates x, y, z · · · and the generalized coordinates
does not depend on q̇i, e.g. x(q, t) not x(q, q̇, t).

3. Any constraints used to reduce the number of degrees of freedom are functions of q⃗, but
not of ˙⃗q.

4. The motion is not dissipative (no damping or friction).

Going forward with the proof, consider xi(q1, q2 · · · , t) and look at the l.h.s. of Lagrange’s
equations of motion.

∂T

∂q̇j

=
∑
i

∂T

∂ẋi

∂ẋi

∂q̇j

+
∑
i

∂T

∂xi

∂xi

∂q̇j

(6.19)

=
∑
i

mẋi

∂ẋi

∂q̇j

=
∑
i

mẋi

(δxi/δt)|fixed qj′ ̸=j

δqj/δt

=
∑
i

mẋi

δxi|fixed qj′ ̸=j

δqj

=
∑
i

mẋi

∂xi

∂qj

.

In the first line we used the fact that T does not depend on x. Continuing with taking the
derivative of U ,

−
∂U

∂q̇j

= −
∑
i

∂U

∂xi

∂xi

∂q̇j

= 0. (6.20)

In the first line above we used the fact that U does not depend on ẋ then we used the second con-
dition that x does not depend on q̇. Adding the two pieces together, then taking the derivative
w.r.t. time,

d

dt

∂

∂q̇
(T − U) =

∑
i

mẍi

∂xi

∂qj

+
∑
i

mẋi

∂ẋi

∂qj

.

Now, we consider the r.h.s. of Lagrange’s equations. Because the kinetic energy depends only
on ẋ and not x, and because the potential depends on x but not ẋ,

∂

∂qj

(T − U) =
∑
i

∂T

∂ẋi

∂ẋi

∂qj

−
∑
i

∂U

∂xi

∂xi

∂qj

(6.21)

=
∑
i

mẋi

∂ẋi

∂qj

−
∑
i

∂U

∂xi

∂xi

∂qj
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Using the fact that mẍi = −(∂/∂xi)U , one can see that the bottom expressions in Eq.s (6.19)
and (6.21) are identical,

d

dt

∂

∂q̇i

(T − U) =
∂

∂qi

(T − U). (6.22)

6.5 Lagrangian Examples

Two examples are presented here. In the first, there are two generalized coordinates, but the two
equations of motion can be reduced to one through conservation laws (angular momentum in
this case). In the second, there is a time-dependent constraint.

Example 6.6: Motion on Surface of Cone
Consider a cone of half angle α standing on its tip at the origin. The surface of the cone is
defined as

r =
√

x2 + y2 = z tanα.

Find the equations of motion for a particle of mass m moving along the surface under the
influence of a constant gravitational force, −mgẑ. For generalized coordinates use the az-
imuthal angle ϕ and r.
Solution:
The kinetic energy is

T =
1

2
mr2θ̇2 +

1

2
m(ṙ2 + ż2)

=
1

2
mr2θ̇2 +

1

2
mṙ2

(
1 + cot2 α

)
=

1

2
mr2θ̇2 +

1

2
mṙ2 csc2 α.

The potential energy is
U = mgr cotα,

so Lagrange’s equations give

d

dt

(
mr2θ̇

)
= 0,

d

dt

(
m csc2 αṙ

)
= mrθ̇2 − mg cotα,

r̈ = rθ̇2 sin2 α − g cosα sinα

The first equation is a statement of the conservation of angular momentum with L = mr2θ̇,
so the second equation can also be expressed as

r̈ =
L2 sin2 α

m2r3
− g sinα cosα.
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Example 6.7: Bead Confined to Parabola
A bead slides along a wire bent in the shape of a parabola,

z =
1

2
kr2, r2 = x2 + y2.

Also, the parabolic wire is rotating about the z axis with angular velocity ω. Derive the equa-
tions of motion. Are there any stable configurations?
Solution:
Using the fact that

ż = ṙ
∂z

∂r
= krṙ,

the kinetic and potential energies are

T =
1

2
m
(
ṙ2 + ż2 + r2ω2

)
=

1

2
m
(
ṙ2 + (krṙ)2 + r2ω2

)
,

U = mgkr2/2.

The equations of motion are then

d

dt

{
mṙ(1 + k2r2)

}
= −mgkr + mk2ṙ2r + mω2r,

r̈ =
−gkr + ω2r − k2ṙ2r

1 + k2r2

For a stable configuration, there needs to be a solution with ṙ = 0 and r̈ = 0. This can only
happen at r = 0, and then for the acceleration to be inward for small deviations of r one
needs to have gk > ω2. If ω2 > gk the bead will move outward indefinitely.

6.6 Small Vibrations and Normal Modes

For a system described by some one dimensional coordinate x, one can often find a minimum of
the potential. For small oscillations of a mass m about the minimum one can find the oscillating
frequency by identifying the curvature of potential as a spring constant, which then yields the
frequency,

keff =
d2V

dx2
, ω =

√
keffm. (6.23)

If the particle moved in two dimensions, one could consider the curvature in two dimensions.
But, in this case one can take derivatives with respect to either x or y. These derivatives about
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the minimum of the potential can be expressed as

kxx =
∂2V

∂x2
, (6.24)

kyy =
∂2V

∂y2
,

kxy = kyx =
∂2V

∂x∂y
,

V (x, y) ≈ V0 +
1

2
kxx(x − x0)

2 +
1

2
kyy(y − y0)

2 + kxy(x − x0)(y − y0).

If there were no off-diagonal term, one can see that the x and the y motion act independently, and
that for small oscillations the x-motion behaves like a harmonic oscillator with spring constant
kxx while the y-motion oscillates as if the spring constant is kyy.

The purpose of this sub-section is to consider the more general case. Not only might there be
off-diagonal terms, but the coordinates might be an angle or some other generalized coordinate.
Further, the kinetic energy might also have a more complicated form. Nonetheless, if there are
N degrees of freedom there are N independent sets of motion, each with its own frequency.
The fact that these coordinates are perpendicular to one another inspires that they are referred
to as “normal” modes. Finding the normal modes and their frequencies for problems with gen-
eralized coordinates is a common problem, applying some straight-forward physics principles
along with linear algebra.

Two examples are provided for solving for normal modes. These are solutions with multiple
generalized coordinates, where the motion is that of simple harmonic motion. However, the
motion is only simple for a particular set of coordinates q1 and q2,

q1 = A cos(ω1t), (6.25)
q2 = B cos(ω2t),

while it is not necessarily simple in other coordinates. For example if x = q1 + q2, and y =
q1 − q2, the x and y motions will contain mixtures of multiple frequencies. For many problems,
or in the limit of small vibrations about a minimum, there is some coordinate system where the
motion is simple. These are normal modes. Characterizing the normal modes involves finding
the frequencies, ωi, and the coordinate system where the motion is simple for each coordinate.
This involves finding the direction, or the linear combination of xi that form the coordinates qi

in which the motion is that of a single oscillator in each coordinate.

For a first example, we consider a system of springs, where we write the Lagrangian, then find
the normal modes. For the second example, a double pendulum is considered. In this case, one
must first make a small angle expansion before finding the modes. In principle, problems could
have the same number of normal modes a degrees of freedom. For example, a system of 7 par-
ticles moving in three dimensions has 21 degrees of freedom. However, some of the degrees of
freedom do not have oscillatory behavior. For example, for a rigid body in free space, the angles
describing the orientation evolve, but do not oscillate. Also, the center-of-mass coordinates of
a system of particles isolated from outside particles moves at constant velocity. One can also
describe these as normal modes, but acknowledge that their characteristic frequency is zero, as
there are no restoring forces.
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Figure 6.2: For Example 6.7, three masses connected by two springs. The center-of-mass motion is unaf-
fected by the springs.

Example 6.8: Three Masses Connected by Springs

Consider two springs, whose relaxed lengths are ℓ, connected to three masses as depicted in
Fig. 6.2. Describe the two normal modes of the motion. We can write the Lagrangian as

L =
m

2
ẋ2
1 + mẋ2

2 +
m

2
ẋ2
3 −

k

2
(x2 − x1 − ℓ)2 −

k

2
(x3 − x2 − ℓ)2.

There are three coordinates, thus there are three equations of motion,

mẍ1 = −k(x1 − x2 + ℓ)

2mẍ2 = −k(x2 − x1 − ℓ) − k(x2 − x3 + ℓ)

= −k(2x2 − x1 − x3)

mẍ3 = −k(x3 − x2 + ℓ).

This is a bit complicated because the center-of-mass motion does not easily separate from the
three equations. Instead, choose the following coordinates,

X =
x1 + 2x2 + x3

4
,

q1 = x1 − x2 + ℓ,

q3 = x3 − x2 − ℓ.

In these coordinates the potential energy only involves two coordinates,

U =
k

2
(q2

1 + q2
3).

To express the kinetic energy express x1, x2 and x3 in terms of X , q1 and q3,

x1 = (3q1 − q3 − 4ℓ + 4X)/4,

x2 = (4X − q1 − q3)/4,

x3 = (3q3 − q1 + 4ℓ + 4X)/4.
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The kinetic energy and Lagrangian are them

T =
m

2

1

16
(3q̇1 − q̇3 + 4Ẋ)2 + m

1

16
(4Ẋ − q̇1 − q̇3)

2 +
m

2

1

16
(3q̇3 − q̇1 + 4Ẋ)2

=
3m

8
(q̇2

1 + q̇2
3) −

m

4
q̇1q̇3 + 2mẊ2,

L =
3m

8
(q̇2

1 + q̇2
3) −

m

4
q̇1q̇3 + 2mẊ2 −

k

2
q2
1 −

k

2
q2
3.

The three equations of motion are then,

3

4
mq̈1 −

1

4
mq̈3 = −kq1,

3

4
mq̈3 −

1

4
mq̈1 = −kq3,

4mẌ = 0.

One could obtain the same result by summing the equations of motion for x1, 2x2 and x3

above. The last equation simply states that the center-of-mass velocity is fixed. Mathemati-
cally, it can be considered a normal mode with zero frequency.
The second two equations are more complicated. To solve them, we assume a form

q1 = Aeiωt,

q3 = Beiωt,

Because this is a linear equation, we can multiply the solution by a constant and it will still be
a solution. Thus, we can set B = 1, then solve for A, effectively solving for A/B. Putting
this guess into the equations of motion,

−
3

4

A

B
ω2 +

1

4
ω2 = −ω2

0

A

B
,

−
3

4
ω2 +

1

4

A

B
ω2 = −ω2

0.

This is two equations and two unknowns, ω2 and A/B. Substituting for A/B gives a
quadratic equation,

ω4 − 3ω2
0ω

2 + 2ω4
0 = 0,

ω2
0 ≡ k/m.

The two solutions are

(1) ω = ω0, A = −B,

(2) ω = ω0

√
2, A = B.

The first solution corresponds to the two outer masses moving in opposite directions, in sync,
with the middle mass fixed. The second solution has both outer masses moving in the same
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direction, but with the center mass moving opposite. These two solutions are referred to as
normal modes, and are characterized by their frequency and by the linear combinations of
coordinates that oscillate together. In general, the solution is a linear combination of normal
modes, which usually results in a chaotic looking motion. However, once the solution is ex-
pressed in terms of the normal modes, each of which oscillates independently in a simple
manner, one can better understand the motion. Further, the frequencies of these modes rep-
resent the natural resonant frequencies of the system. This is important in the construction of
many structures, such as bridges or vehicles.

Example 6.9: Double Pendulum
Consider a double pendulum confined to the x − y plane, where y is vertical. A mass m is
connected to the ceiling with a massless string of length ℓ. A second mass m hangs from the
first mass with an identical massless string of the same length. Using θ1 and θ2 to describe
the orientations of the strings relative to the vertical axis, find the Lagrangian and derive the
equations of motion, both for arbitrary angles and in the small-angle approximation. Finally,
express the equations of motion in the limit of small oscillations.
Solution:
The kinetic and potential energies are:

T =
1

2
mℓ2θ̇2

1 +
1

2
m
{
(ℓθ̇1 cos θ1 + ℓθ̇2 cos θ2)

2 + (ℓθ̇1 sin θ1 + ℓθ̇2 sin θ2)
2
}

=
1

2
mℓ2

{
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)

}
,

U = mgℓ(1 − cos θ1) + mg [ℓ(1 − cos θ1) + ℓ(1 − cos θ2)]

= mgℓ(3 − 2 cos θ1 − cos θ2)

Lagrange’s equations for θ1 lead to

mℓ2
d

dt

{
2θ̇1 + θ̇2 cos(θ1 − θ2)

}
= −mℓ2θ̇1θ̇2 sin(θ1 − θ2) − 2mgℓ sin θ1,

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇2
2 sin(θ1 − θ2) = −2ω2

0 sin θ1,

ω2
0 ≡ g/ℓ,

and the equations for θ2 are

mℓ2
d

dt

{
θ̇2 + θ̇1 cos(θ1 − θ2)

}
= mℓ2θ̇1θ̇2 sin(θ1 − θ2) − mgℓ sin θ2,

θ̈2 + θ̈1 cos(θ1 − θ2) = −ω2
0 sin θ2.

For small oscillations, one can only consider terms linear in θ1 and θ2 or their derivatives,

2θ̈1 + θ̈2 = −2ω2
0θ1, (6.26)

θ̈1 + θ̈2 = −ω2
0θ2.

To find the solutions, assume they are of the form θ1 = Aeiωt, θ2 = Beiωt. Solve for ω and
A/B, noting that B is arbitrary.
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Plug in the desired form and find

eiωt(−2ω2A − ω2B) = eiωt(−2ω2
0A),

eiωt(−ω2A − ω2B) = eiωt(−ω2
0B).

We can treat B as arbitrary and set it to unity. When we find A, it is the same as A/B for
arbitrary B. This gives the equations

2ω2A + ω2 = 2ω2
0A,

ω2A + ω2 = ω2
0.

This is two equations and two unknowns, with the unknowns being ω and A. Solving them
leads to a quadratic equation with solutions

A = ±
1
√
2
,

ω2 =
ω2

0

1 ± 1/
√
2
.

Again, these two solutions are the normal modes, and the general solution is a sum of the two
solutions, with two arbitrary constants. For the angles θ1 and θ2 are:

θ1 =
A+√
2
eiω+t, θ2 = A+e

iω+t,

θ1 =
−A−√

2
eiω−t, θ2 = A−e

iω−t,

ω± = ω0

√
1

1 ± 1/
√
2
.

One can also express the solution in vector notation, with the vectors having arbitrary ampli-
tudes A+ and A−,

θ+ =

( 1√
2

1

)
A+e

iω+t,

θ− =

( −1√
2

1

)
A−e

iω−t.

Here, the upper/lower components of the vector describe θ1/θ2 respectively.

6.7 Addressing the Small Oscillation Problem with Mutiple Degrees of Free-
dom with Linear Algebra

These problems can be treated as linear algebra exercises with q being a vector of generalized
coordinates. Linear algebra is being used only sparingly. Nonetheless, in this course we describe
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how this works for the curious student. In the limit of small vibrations, the equations of motion
can usually be expressed in the form,

Mq̈ = −Kq,

a form that looks like the spring equation. However, q is an n−dimensional vector and M and
K are n × n matrices.

Example 6.10: Normal Modes for Double Pendulum with Linear Algebra
In the double pendulum example, the dimensionality is 2 and the q refers to the θ1 and θ2,
and the matrices for M and K can be read off Eq. (6.26),

M =

(
2 1
1 1

)
, K =

(
2ω2

0 0
0 ω2

0

)
.

Multiplying both sides of the equation by the inverse matrix M−1,

q̈ = −
(
M−1K

)
q.

Here,

M−1 =

(
1 −1
−1 2

)
,

M−1K =

(
2 −1
−2 2

)
ω2

0.

One can find a transformation, basically a rotation, that transforms to a frame where M−1K is
diagonal. In this coordinate system the diagonal components of M−1K represent the squared
frequencies of the normal modes,

M−1K → −
(

ω2
+ 0

0 ω2
−

)
,

and are known as “eigen” frequencies. The corresponding unit vectors,(
1
0

)
,

(
0
1

)
,

in the new coordinate system can be rotated back into the original frame, and become the
solutions for the normal modes. These are then called “eigenvectors”, which are the same as
the normal modes. Finding the eigenfrequencies is performed by realizing that the determi-
nant of a matrix is unchanged by the transformation between coordinate systems. Writing the
equations of motion as an eigenvalue problem,

[A − λiI]ui = 0, A ≡ M−1K, λi ≡ ω2
i . (6.27)

In the coordinate system where M−1K is diagonal, and the forms for ui are simple this re-
quires that in that system, the diagonal elements of M−1K are the eigenvalues, ω2

i . For each
ω2

i , the determinant |A − λiI| must vanish. This is then true in any coordinate system,

det [A − λI] = 0, (6.28)
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which for a 2 × 2 matrix becomes ∣∣∣∣ A11 − λ A12

A21 A22 − λ

∣∣∣∣ = 0, (6.29)

A11A22 − λA11 − λA22 + λ2 − A21A12 = 0. (6.30)

One can solve a quadratic equation for λ, which gives two eigenvalues corresponding to ω2
+

and ω2
− found above. Choosing one of the eigenvalues, one can insert one of the eigenvalues

λi into Eq. (6.29) and solve for ui, then choose the other eigenvalue and solve for the other
corresponding vector.
If this were a 3-dimensional set of equations, the determinant would include terms like λ3

and would become a cubic equation with three eigenvalues. One would then solve for three
eigenvectors. If one has a system with dimensionality n > 2, one usually resorts to solving the
problem numerically due to the messiness of the algebra. The main programming languages
all have packages which readily diagonalize matrices and find eigenvectors and eigenvalues.

6.8 Conservation Laws

Energy is conserved only when the Lagrangian has no explicit dependence on time, i.e. L(q, q̇),
not L(q, q̇, t). To show this, we first define the Hamiltonian,

H =
∑
i

(
q̇i

∂L

∂q̇i

)
− L. (6.31)

After showing that H is conserved, i.e. (d/dt)H = 0, we then show that H can be identified
with the total energy, H = T + V .

One can see that H is conserved by applying first using the chain rule for (d/dt)H in Eq. (6.31),
then applying Lagrange’s equations,

d

dt
H =

∑
i

{
q̈i

∂L

∂q̇i

+ q̇i

d

dt

(
∂L

∂q̇i

)
−

∂L

∂q̇i

q̈i −
∂L

∂qi

q̇i

}
(6.32)

=
∑
i

{
q̈i

∂L

∂q̇i

+ q̇i

∂L

∂qi

−
∂L

∂q̇i

q̈i −
∂L

∂qi

q̇i

}
= 0.

These steps assumed that L had no explicit time dependence, i.e. L is a function of q and q̇, but
not of t.

Next, we show that L can be identified with the energy. Because V does not depend on q̇,

H =
∑
i

∂T

∂q̇i

q̇i − T + V. (6.33)

If the kinetic energy has a purely quadratic form in terms of q̇,

T =
∑
ij

Aij(q)q̇iq̇j, (6.34)
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the Hamiltonian becomes

H =
∑
ij

2Aij(q)q̇iq̇j −
∑
ij

Aij(q)q̇iq̇j + V (6.35)

= T + V.

The proof that H equals the energy hinged on the fact that the kinetic energy was quadratic in
q̇. This can be attributed to time-reversal symmetry. Because the Cartesian coordinates xi do not
depend on q̇i or on time, ẋi = (∂xi/∂qj)q̇j . Thus, the kinetic energy, T = mẋ2

i/2, should be
proportional to two powers of q̇, which validates the assumption in Eq. (6.34).

Here, energy conservation is predicated on the Lagrangian not having an explicit time depen-
dence. Without an explicit time dependence the equations of motion are unchanged if one trans-
lates a fixed amount in time because the physics does not depend on when the clock starts. In
contrast, the absolute time becomes relevant if there is an explicit time dependence. In fact, con-
servation laws can usually be associated with symmetries. In this case the translation symmetry
in time leads to energy conservation.

For another example of how symmetry leads to conservation laws, consider a Lagrangian for a
particle of mass m moving in a two-dimensional plane where the generalized coordinates are
the radius r and the angle θ. The kinetic energy would be

T =
1

2
m
{
ṙ2 + r2θ̇2

}
, (6.36)

and if the potential energy V (r) depends only on the radius r and not on the angle, Lagrange’s
equations become

d

dt
(mṙ) = −

∂V

∂r
+ mθ̇2r, (6.37)

d

dt
(mr2θ̇) = 0.

The second equation implies that mr2θ̇ is a constant. Indeed, it is the angular momentum which
is conserved for a radial force. Here, the conservation of angular momentum is associated with
the independence of the physics to changes in θ, or in other words, rotational invariance. Once
one knows the fact that L = mr2θ̇ is conserved, it can be inserted into the equations of motion
for ṙ,

mr̈ = −
∂V

∂r
+

L2

mr3
. (6.38)

This is related to Noether’s theorem http://en.wikipedia.org/wiki/Noether’s_theorem, named
after Emmy Noether, http://en.wikipedia.org/wiki/Emmy_Noether. Simply stated, if the La-
grangian L is independent of one of the generalized coordinates qi, the quantity ∂L/∂q̇i is
conserved,

d

dt

∂L

∂q̇i

= 0. (6.39)

Another easy example is in Cartesian coordinates where the potential depends only on x and y
but not on z. In that case, there is a translational symmetry. From Eq. (6.39), this translates into
conservation of the momentum in the z direction.
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Example 6.11: Symmetry Arguments and Conservation Laws
Consider a pair of particles of mass m1 and m2 where the potential is of the form

U(r⃗1, r⃗2) = Va(|m1r⃗1 + m2r⃗2|/(m1 + m2)) + Vb(|r⃗1 − r⃗2|).

Using symmetry arguments alone, are there any conserved components of the momentum?
or of the angular momentum?
There is no translational invariance, hence there are no conserved components of the momen-
tum. However, there is rotational invariance about any axis that goes through the origin.
Hence, there is angular momentum conservation in all three directions. Symmetry arguments
are great ways to recognize the existence of conserved quantities, but actually expressing them
in terms of coordinates can be tricky. For instance, you may need to write the Lagrangian in
terms of angles.

6.9 Exercises

1. Consider a hill whose height y is given as a function of the horizontal coordinate x. Con-
sider a segment of the hill from x = 0 to x = L with initial height y(x = 0) = 0 and
whose final height is y(x = L) = −h. Transforming the last equation in Example 6.1 for
a downward vertical force rather than a horizontal force,

x = −
√

−2ay − y2 + a arccos(1 + y/a).

Consider a wheel of radius a rolling along the bottom of the x axis. Mark a point on the
top of the wheel, which is originally at the origin, x = y = 0, when the top of the wheel
touches the origin. As the wheel rolls by an angle θ the marked point moves due to both
the translation and the rotation of the wheel. The y coordinate of the marked point is

y = −a(1 − cos θ),

whereas the x coordinate is
x = aθ − a sin θ.

The first term is due to the horizontal translation of the axis, while the second term arises
from the rotation of the wheel. Re-express these two equations to find x(y).

2. Consider a chain of length L that hangs from two supports of equal height stretched from
x = −X to x = +X . The general solution for a catenary is

y = λ + a cosh[(x − x0)/a],

(a) Using symmetry arguments, what is x0?

(b) Express the length L in terms of X and a.

(c) Numerically solve the transcendental equation above to find a in terms of L = 10 m
and X = 4 m.
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3. Consider a mass m connected to a spring with spring constant k. Rather than being fixed,
the other end of the spring oscillates with frequency ω and amplitude A. For a generalized
coordinate, use the displacement of the mass from its relaxed position and call it y =
x − ℓ − A cosωt. In this system the potential energy of the spring is ky2/2.

(a) Write the kinetic energy in terms of the generalized coordinate.

(b) Write down the Lagrangian.

(c) Find the equations of motion for y.

4. Consider a bead of mass m on a circular wire of radius R. Assume a force kx acts on the
bead, where x and y axes run through the center of the circle. Using θ as the generalized
coordinate (measured relative to the x axis),

(a) Write the Lagrangian in terms of θ.

(b) Find the equations of motion.

5. Consider a pendulum of length ℓ with all the mass m at its end. The pendulum is allowed
to swing freely in both directions. Using ϕ to describe the azimuthal angle about the z axis
and θ to measure the angular deviation of the pendulum from the downward direction,
address the following questions:

(a) If the pendulum is initially moving horizontally with velocity v0 and angle θ0 = 90◦

(horizontal), use energy and angular momentum conservation to find the minimum
angles of θmin subtended by the pendulum. (Note that the angle will oscillate between
90◦ and the minimum angle.

(b) Write the Lagrangian using θ and ϕ as generalized coordinates.

(c) Write the equations of motion for θ and ϕ.

(d) Rewrite the equations of motion for θ using angular momentum conservation to elim-
inate and reference to ϕ.

(e) Find the value of L required for the stable orbit to be at θ = 45◦.

(f) For the steady orbit found in (e) consider small perturbations of the orbit. Find the
frequency with which the pendulum oscillates around θ = 45◦.

6. Consider a mass m that is connected to a wall by a spring with spring constant k. A second
identical mass m is connected to the first mass by an identical spring. Motion is confined
to the x direction.

(a) Write the Lagrangian in terms of the positions of the two masses x1 and x2.

(b) Solve for the equations of motion.

(c) Find two solutions of the type

x1 = Aeiωt, x2 = Beiωt.

Solve for A/B and ω. Express your answers in terms of ω2
0 = k/m.

7. Consider two masses m1 and m2 interacting according to a potential V (r⃗1 − r⃗2).
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(a) Write the Lagrangian in terms of the generalized coordinates R⃗cm = (m1r⃗1+m2r⃗2)/(m1+
m2) and r⃗ = r⃗1 − r⃗2, and their derivatives.

(b) Using the independence of the Lagrangian with respect to R⃗cm, find expressions for
the conserved total momentum.

103


	Dimensions, Scalars, Vectors and Tensors
	Dimensions and Units
	Scalars, Vectors, Matrices and Tensors
	Exercises

	Newton's Laws
	Air Resistance in One Dimension
	Projectile Motion
	Motion in a Magnetic Field
	Conservation of Energy
	Solving an Integral Numerically
	Numerically Solving Equations of Motion from Potentials
	Conservation of Momentum
	Conservation of Angular Momentum
	Symmetries and Conservation Laws
	Exercises

	Oscillations
	Harmonic Oscillator
	Damped Oscillators
	Sinusoidally Driven Oscillators
	Alternative Derivation for Driven Oscillators
	Resonance Widths: the Q factor
	Principal of Superposition and Periodic Forces (Fourier Transforms)
	Response to Transient Force
	Solving Equations of Motion Numerically
	Exercises

	Gravity and Central Forces
	Gravity
	Tidal Forces
	Deriving Kepler's Laws
	Centrifugal Potential/Barrier and the Effective Radial Potential
	Stability of Orbits
	Scattering and Cross Sections
	Center-of-Mass Coordinates
	Rutherford Scattering
	Exercises

	Rotating Coordinate Systems
	Accelerating Frames
	Rotating Frames
	Coriolis Force
	The Foucault Pendulum
	Exercises

	Lagrangians and the Calculus of Variations
	Calculus of Variations and the Euler-Lagrange Equation
	Auxiliary Constraints
	Lagrangians
	Proving Lagrange's Equations of Motion from Newton's Laws
	Lagrangian Examples
	Small Vibrations and Normal Modes
	Addressing the Small Oscillation Problem with Mutiple Degrees of Freedom with Linear Algebra
	Conservation Laws
	Exercises


