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1 Chapter 1 Solutions

1. All physicists must become comfortable with thinking of oscillatory and wave mechanics
in terms of expressions that include the form eiωt.

(a)

cosωt = 1−
1

2
(ωt)2 +

1

4!
(ωt)4 +

1

6!
(ωt)6 · · ·

sinωt = (ωt)−
1

3!
(ωt)3 +

1

5!
(ωt)5 · · ·

(b)

eiωt = 1 + iωt +
1

2
(iωt)2 +

1

3
(iωt)3 +

1

4!
(iωt)4 · · ·

= 1 + i2
1

2
(ωt)2 + i4

1

4!
(ωt)4 + i6

1

6!
(ωt)6 · · ·+ iωt + i3

1

3!
(ωt)3 + i5

1

5!
(ωt)5 · · ·

(c) Use fact that i2 = −1 and i4 = 1 then add expressions above for even and odd terms
of expansions to see eiωt = cosωt + i sinωt.

(d)

eiπ = cos(π) + i sin(π) = −1 (1.1)
ln(−1) = iπ. (1.2)

2. Find the angle between the vectors b⃗ = (1, 2, 4) and c⃗ = (4, 2, 1) by evaluating their
scalar product.

b⃗ · c⃗ = 1 + 4 + 4 = 12, |⃗b| =
√
1 + 4 + 16 =

√
21, |c⃗| =

√
16 + 4 + 1 =

√
21(1.3)

cos θbc =
b⃗ · c⃗
|⃗b| |c⃗|

=
12

21
, (1.4)

θbc = cos−1(4/7). (1.5)

3. Use the product rule to show that

d

dt
(r⃗ · s⃗) =

dr⃗

dt
· s⃗ + r⃗ ·

ds⃗

dt
.

Solution

d

dt

∑
i

risi =
∑
i

dri

dt
si + ri

dsi

dt
(1.6)

=
dr⃗

dt
· s⃗ + r⃗ ·

ds⃗

dt
. (1.7)



4. Multiply the rotation matrix in Example 1 by its transpose to show that the matrix is
unitary, i.e. you get the unit matrix.

Solution:

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


=

 cos2 ϕ + sin2 ϕ − cosϕ sinϕ + cos sinϕ 0
− cosϕ sinϕ + cos sinϕ cos2 ϕ + sin2 ϕ 0

0 0 1


=

 1 0 0
0 1 0
0 0 1


5. Find the matrix for rotating a coordinate system by 90 degrees about the x axis.

Solution:

U =

 ê′
1 · ê1 ê′

1 · ê2 ê′
1 · ê3

ê′
2 · ê1 ê′

2 · ê2 ê′
2 · ê3

ê′
3 · ê1 ê′

3 · ê2 ê′
3 · ê3

 , Uij = cos θij

=

 1 0 0
0 0 −1
0 1 0


The signs of the off-diagonal term would switch depending on whether the coordinate
system changes or the object.

6. Consider a parity transformation which reflects about the x = 0 plane. Find the matrix
that performs the transformation. Find the matrix that performs the inverse transforma-
tion.

Solution:
The matrix needs to flip the x components of any vector while leaving the y and z compo-
nents unchanged.  −1 0 0

0 1 0
0 0 1


7. Show that the scalar product of two vectors is unchanged if both undergo the same rota-

tion. Use the fact that the rotation matrix is unitary, Uij = U−1
ji .

Solution:



x⃗ · y⃗ = xiyy

x⃗′ · y⃗′ = UijxjUikyk

= xjU
t
jiUikyk

= xjU
−1
ji Uikyk

= xjδjkyk = xjyj.✓

8. Show that the product of two unitary matrices is a unitary matrix.
Solution:

(UV )tUV =? I
(UV )tij = UjkVki

UjkVkiUjmVmn =?δin

= V t
ikU

t
kjUjmVmn

= V t
ikVkb = δin.✓

9. Show that ∑
k

ϵijkϵklm = δilδjm − δimδjl.

Solution:
For any k in the sum, because i ̸= j and l ̸= m, and because there are only two indices
available because none can be equal to k, the only terms possible are δijδjm and δimδjl.
One then multiplies the matrices out for i = 1, j = 2, l = 1,m = 2, i = 2, j =
3, l = 2,m = 3, and i = 1, j = 3, l = 1,m = 3. There are also solutions with
i ← j and l ↔ m, but if you show these four, you know the ones with the indices
switched will just switch the overall sign due to the antisymmetry of ϵ. To show the first
case (i = 1, j = 2, l = 1,m = 2),∑

k

ϵ12kϵ12k = 1, δ11δ22− δ12δ21 = 1.

The others are similar.

10. Find min or max of z = 3x2 − 4y2 + 12xy − 6x + 24 Solution:

∂xz = 6x + 12y − 6 = 0, (1.8)
∂yz = −8y + 12x = 0 (1.9)

−32y + 12 = 0, y = 3/8, (1.10)
x = 1/4. (1.11)

To find whether max or min,

z(1/4, 3/8) = −6.375 (1.12)
z(0, 0) = −6. (1.13)



Suggests minimum. However, if you look more carefully, you will find this is a saddle
point (Eigenvalues of ∂i∂jz matrix are mix of positive and negative. – You won’t be ex-
pected to do this). You can also try a few sample points and see that some values are higher
than the xy point found above and some are lower.

11. Consider a cubic volume V = L3 defined by 0 < x < L, 0 < y < L and 0 < z < L.
Consider a vector A⃗ that depends arbitrarily on x, y, z. Show how Guass’s law,∫

V

dv∇ · A⃗ =

∫
S

dS⃗ · A⃗,

is satisfied by direct integration.

Solution:

∫
V

dv∇ · A⃗ =

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz (∂xAx + ∂yAy + ∂zLz)

=

∫ Ly

0

dy

∫ Lz

0

dz [Ax(Lx, y, z)−Ax(0, y, z)]

+

∫ Lx

0

dx

∫ Lz

0

dz [Ay(x, Ly, z)−Ay(x, 0, z)]

+

∫ Lx

0

dx

∫ Lz

0

dy [Az(x, y, Lz)−Az(x, y, 0)]

=

∫
S

dS⃗ · A⃗.

12. A real n−dimensional symmetric matrix λ can always be diagonalized by a unitary trans-
formation, i.e. there exists some unitary matrix U such that,

UijλjkU
−1
km = λ̃im =


λ̃11 0 · · · 0

0 λ̃22 · · · 0
... . . . ...
0 · · · · · · λ̃nn

 . (1.14)

The values λ̃ii are referred to as eigenvalues. The set of n eigenvalues are unique, but their
ordering is not – there exists a unitary transformation that permutes the indices.

Consider a function f(x1, · · · , xn) that has the property,

∂if(x⃗)|x⃗=0 = 0, (1.15)

for all i. Show that if this function is a minimum, and not a maximum or an inflection
point, that the n eigenvalues of the matrix

λij ≡ ∂i∂jf(x⃗)|x⃗=0 , (1.16)

must be positive.
Solution:



You can always calculate δf in the new coordinate system, and because f is a scalar, you
can write

δf =
1

2
δriδrj

∂

∂ri

∂

∂rj
f(r⃗)

=
1

2
δr′

iδr
′
j

∂

∂r′
i

∂

∂r′
j

f(r⃗′)

=
1

2

∑
i

δr′
iδr

′
iλ̃ii.

4 Because you can adjust the components of δr′ individually, then each component of λ̃,
i.e. each eigenvalue of λ, must be positive.

13. (a) For the unitary matrix U that diagonalizes λ as shown in the previous problem. Show
that each row of the unitary matrix represents an orthogonal unit vector by using the
definition of a unitary matrix.

(b) Show that the vector

x
(k)
i ≡ Uki = (Uk1, Uk2, · · · , Ukn), (1.17)

has the property that

λijx
(k)
j = λ̃kkx

(k)
i . (1.18)

These vectors are known as eigenvectors, as they have the property that when multi-
plied by λ the resulting vector is proportional ( same direction) as the original vector.
Because one can transform to a basis, using U , where λ is diagonalized, in the new
basis the eigenvectors are simply the unit vectors.

Solution:

U t
jiUik = δik (1.19)

x
(j)
i ≡ U t

ji = Uij, (1.20)

x
(j)
i x

(k)
i = δik.✓ (1.21)

14. Which of these equations might be valid? Base your response solely on whether whether
both sides of the equation are consistent dimensionally (center column) or rotationally
(right-hand column). Here, F, q, v, B, L, r, t, p, E, a refer to force, charge, velocity, mag-
netic field, angular momentum, position, time, momentum and energy, respectively.

expression dimensionally rotationally
Fi = qϵijkvjBk (same as F⃗ = qv⃗ × B⃗) ✓ ✓

F⃗ = r⃗ · L⃗/r2

ri = vit +
t2

2
ϵijkak ✓

E = r⃗ · (p⃗× L⃗) ✓



2 Chapter 2 Solutions

1. Consider a bicyclist with air resistance proportional to v2 and rolling resistance propor-
tional to v, so that

dv

dt
= −Bv2 − Cv.

If the cyclist has initial velocity v0 and is coasting on a flat course, a) find her velocity as a
function of time, and b) find her position as a function of time.

Solution:

t = −
∫ v

v0

dv′ 1

Bv′2 + Cv′

Bt = −
1

β

∫ v

v0

dv′
(
1

v′
−

1

v′ + β

)
, β ≡ C/B

=
−1
β

ln

(
v(v0 + β)

v0(v + β)

)
,

v =
v0e

−Ct

1 + (Bv0/C)(1− e−Ct)
,

x =

∫
dt v(t) =

−1
C

∫
du

v0

1 + Bv0(1− u)/C
, u ≡ e−Ct

=
1

B
ln (1 + Bv0(1− u)/c)

=
1

B
ln
[
1 + Bv0(1− e−Ct)/C

]
.

2. For Eq. (36) show that in the limit where γ → 0 one finds t = 2v0y/g.

Solution:
Eq. (36) is

0 = −
gt

γ
+

v0y + g/γ

γ

(
1− e−γt

)
.

Expand the exponential to 2nd order in a Taylor expansion,

0 = −
gt

γ
+

v0y + g/γ

γ

(
γt−

1

2
γ2t2 − · · ·

)
0 = v0yt−

1

2
gt2,

t = 2v0y/g.

3. The motion of a charged particle in an electromagnetic field can be obtained from the
Lorentz equation. If the electric field vector is E and the magnetic field is B, the force
on a particle of mass m that carries a charge q and has a velocity v

F = qE + qv × B



where we assume v << c(speed of light).

(a) If there is no electric field and if the particle enters the magnetic field in a direction
perpendicular to the lines of magnetic flux, show that the trajectory is a circle with
radius

r =
mv

qB
=

v

ωc

,

where ωc ≡ qB/m is the cyclotron frequency.
(b) Choose the z-axis to lie in the direction of B and let the plane containing E and B be

the yz−plane. Thus
B = Bk̂, E = Eyĵ + Ezk̂.

Show that the z component of the motion is given by

z(t) = z0 + ż0t +
qEz

2m
t2,

where
z(0) ≡ z0 and ż0 ≡ ż0.

(c) Continue the calculation and obtain expressions for ẋ(t) and ẏ(t). Show that the time
averages of these velocity components are

⟨ẋ⟩ =
Ey

B
, ⟨ẏ⟩ = 0.

(Show that the motion is periodic and then average over one complete period.)
(d) Integrate the velocity equations found in (c) and show (with the initial conditions

x(0) = −A/ωc, ẋ(0) = Ey/B, y(0) = 0, ẏ(0) = A that

x(t) =
−A
ωc

cosωct +
Ey

B
t, y(t) =

A

ωc

sinωct.

These are the parametric equations of a trochoid. Sketch the projections of the tra-
jectory on the xy-plane for the cases (i) A > |Ey/B|, (ii) A < |Ey/B|, and (iii)
A = |Ey/B|. (The last case yields a cycloid.)

Solution:

(a) The solution found in Eq. (43)

x− x0 =
−A
ωc

cos(ωct− ϕ), vx = A sin(ωct− ϕ),

y − y0 =
A

ωc

sin(ωct− ϕ), vy = A cos(ωct− ϕ),

ωc ≡
qB

m
.

The velocity is v = A so the radius of the orbit is r = A/ωc = mv/qB.



(b) Since there are no magnetic forces in the z direction, the z motion is determined by

maz = qEz,

which is constant acceleration az = qEz/m, and for initial position z0 and initial
vz = vz0,

z = z0 + v0zt +
1

2

qEz

m
t2.

(c) The equations of motion are

v̇y = −ωcvx + qEy/m,

v̇x = ωcvy,

Substituting,

v̈y = −ω2
cvy,

v̈x = −ω2
cvx + qEyωc/m,

d2

dt2
(vx − qEyωc/m) = −ω2

c (vx − Ey/B)) .

By inspection, ⟨vy⟩ = 0 and ⟨vx⟩ = Ey/B.

(d) From the equations above, one can see that for the initial conditions ẏ(0) = A,
ẋ(0) = 0,

vy(t) = A cosωct,

vx(t) = −A sinωct + Ey/B.

Integrating over time, and assuming y(0)=0 and x(0) = A/ωc,

y(t) = (A/ω) sinωct, x(t) = −(A/ω) cosωct +
Eyt

B
.

4. A particle of mass m has velocity v = α/x, where x is its displacement. Find the force
F (x) responsible for the motion.

Solution:

U(x) +
1

2
mv2 = constant,

U(x) = −constant−
mα2

2x2
,

F (x) = −∂xU(x) = −
mα2

x3
.

5. A particle is under the influence of a force F = −kx + kx3/α2, where k and α are
constants and k is positive. Determine U(x) and discuss the motion. What happens when
E = (1/4)kα2?



Solution:

U(x) =

∫
dxF (x) =

1

2
kx2 −

1

4α2
kx4.

This potential has a well at x = 0 then rises until x = α before falling off again. The
maximum potential, U(x = ±α) = kα2/4. If the energy is higher, the particle cannot be
contained in the well.

6. Using Eq. (??) find the position as a function of a time by numerical integration for the
case where a particle of mass m moves under the potential U(x) = U0

√
x/L and for an

initial velocity v0. Use the following values: m = 2.5kg, v0 = 75.0, L = 10m, U0=15 J.
Solve for time until the particle returns to the origin. Make a graph of x vs t for the entire
trajectory from your computer output. Turn in the graph and a printout of your program.

Solution:

��

�������

������

��������

������

�� ������ ������ ������ ������� ������� �������

�
��
�
�

�����

int main(){
double t=0.0,x,U,KE,v,U0=15,L=10.0,v_0=75.0,m=2.5;
double E=0.5*m*v_0*v_0;
double xmax=L*pow(E/U0,2);
printf("xmax=%g\n",xmax);
double dx=xmax/50.0;
for(x=0.5*dx;x<xmax;x+=dx){

U=U0*sqrt(x/L);
KE=E-U;
v=sqrt(2.0*KE/m);
t+=dx/v;
printf("%8.1lf %10.1lf %g\n",t,x,v);



}
printf("tmax=%g\n",t);
return 0;

}

7. Prove that the work on the center of mass during a small time interval δt, which is defined
by

∆Wcm ≡ F⃗tot · δr⃗cm,

is equal to the change of the kinetic energy of the center of mass,

Tcm ≡
1

2
Mtotv

2
cm, ∆Tcm = Mtotv⃗cm · δv⃗cm.

Use the following definitions:

F⃗tot =
∑
i

F⃗i,

Mtot =
∑
i

mi,

r⃗cm =
1

Mtot

∑
i

mir⃗i,

v⃗cm =
1

Mtot

∑
i

miv⃗i.

Solution:

∑
i

F⃗i ·
∑

j mjδr⃗j∑
k mk

=? (
∑
k

mk)

∑
ij miv⃗i ·mjδv⃗j

(
∑

k mk)2∑
ij

mi

δv⃗i

δt
·mjδr⃗j =?

∑
ij

miv⃗i ·mjδv⃗j

Because δr⃗i/δt = v⃗i, both sides are equal.

8. Consider a rocket with initial mass M0 at rest in deep space. It fires its engines which eject
mass with an exhaust speed ve relative to the rocket. The rocket loses mass at a constant
rate α = dM/dt. Find the speed of the rocket as a function of time.

Solution:

The rocket’s speed is

v = −ve ln

(
M(t)

M0

)
.

Here M(t) = M − αt, so

v(t) = −ve ln

(
M0 − αt

M0

)
.



9. Imagine that a rocket can be built so that the best percentage of fuel to overall mass is 0.9.
Explain the advantage of having stages.

Solution:
The change in velocity during the final stage is −ve ln(1 − f), where f is the fraction
of the mass that is fuel. Thus, any acceleration during earlier stages adds to the overall
speed. If there were only one large stage, the final answer would be set by f and would be
independent of the size of the rocket.

10. Ted and his iceboat have a combined mass of 200 kg. Ted’s boat slides without friction on
the top of a frozen lake. Ted’s boat has a winch and he wishes to wind up a long heavy
rope of mass 300 kg and length 100 m that is laid out in a straight line on the ice. Ted’s boat
starts at rest at one end of the rope, then brings the rope on board the ice boat at a constant
rate of 0.25 m/s. After 400 meters the rope is all aboard the iceboat.

(a) Before Ted turns on the winch, what is the position of the center of mass relative to
the boat?

(b) Immediately after Ted starts the winch, what is his speed?

(c) Immediately after the rope is entirely on the boat, what is Ted’s speed?

(d) Immediately after the rope is entirely on board, what is Ted’s displacement relative to
his original position?

(e) Immediately after the rope is entirely on board, where is the center of mass compared
to Ted’s original position?

(f) Find Ted’s velocity as a function of time.

Solution:
a) R = (200 · 0 + 300 · 50)/500 = 30 m.

b) vt − vr = 0.25 m/s, 200 · vt + 300 · vr = 0. Solve 2 eq.s 2 unk.s and get vt = 0.15
m/s.

c) Zero, by momentum conservation

d) 30 m by conservation of center-of-mass

e) same as (d)

f) Since the time-dependent masses are

mt = 200 + 0.25t
300

100
, mr = 300− 0.25t

300

100
.

the equations to solve are

vt − vr = 0.25

(200 + 0.75t)vt + (300− 0.75t)vr = 0.

Solving for Ted’s velocity,

vt(t) = 0.25
300− 0.75t

500
.



Integrate to get Ted’s position

x =

∫ t

0

dt′ vt(t
′) = 0.15t−

3

16000
t2.

11. Two disks are initially at rest, each of mass M , connected by a string between their centers.
The disks slide on low-friction ice as the center of the string is pulled by a string with a
constant force F through a distance d. The disks collide and stick together, having moved
a distance b horizontally. Determine the final speed of the disks just after they collide.

Solution:
The horizontal force acting on the upper disk is F/2, the "work" along the x direction is

Fb/2 =
1

2
mv2

x.

The x component of the velocity is unchanged by the sudden "sticking" of the two disks,
so,

vx =
√

Fb/m.

Or, Consider the center-of-mass of the two-disk system. This moves according to the net
force F a distance b. So, once again Fx = (1/2)(2m)v2, and v = sqrtFb/m.

12. Santa Claus is skating on the magic ice near the north pole, which is frictionless. A massless
rope sticks out from the pole horizontally along a straight line. The rope’s original length
is L0. Santa approaches the rope moving perpendicular to the direction of the rope and
grabs the end of the rope. The rope then winds around the thin pole until Santa is half the
original distance, L0/2, from the pole. If Santa’s original speed was v0, what is his new
speed?

Solution:

The string doesn’t absorb energy, so the kinetic energy is unchanged and the final speed is
v0. Also if you consider a small pole of radius b, the torque is Tb = m(v2/r)b.

d

dt
(mvr) = mv̇r + mvṙ = Tb = mv2b/r.



The rate at which the rope shortens is ṙ = 2πb2πr
v

= bv/r. Plugging this in above,

mv̇r + mv(bv/r) = mv2b/r, mv̇r = 0.

Thus v is constant.



3 Chapter 3 Solutions

1. A floating body of uniform cross-sectional area A and of mass density ρ and at equilibrium
displaces a volume V . Show that the period of small oscillations about the equilibrium
position is given by

τ = 2π
√
V/gA

Solution:
The buoyant force is ρfluidAgy, where y is the height of the waterline from the bottom. The
effective spring constant is k = ρfluidAg and the mass is ρVobj, where Vobj is the volume
of the object. The frequency is

ω0 =
√
k/m =

√
ρfluidAg

ρVobj

.

From Archimedes principle ρVobj = ρfluidV . Thus

ω0 =

√
Ag

V
, τ =

2π

ω
= 2π

√
V

gA
.

2. Show that the critically damped solution, Eq. (??), is indeed the solution to the differential
equation.

Solution:
Use the fact that ω0 = β.

x = Ae−βt + Bte−βt

ẍ + 2βẋ + β2x = A
{
β2 − 2β2 + β2

}
e−βt + B

{
(β2 − 2β2 + β2)t + (−2β + 2β)

}
= 0.

3. Consider an over-damped harmonic oscillator with a mass of m = 2 kg, a damping factor
b = 20 Ns/m, and a spring constant k = 32 N/m. If the initial position is x = 0.125
m, and if the initial velocity is−2.0 m/s, find and graph the motion as a function of time.
Solve for the time at which the mass crosses the origin.

Solution:
The general solution is

x = A1e
−β1t + A2e

−β2t, β1 = β +
√

β2 − ω2
0, β2 = β −

√
β2 − ω2

0.

Here β1 = 8 and β2 = 2. The I.C. give

0.125 = A1 + A2,

−(β1A1 + β2A2) = −2
A1 = 7/24,

A2 = −1/6.



The solution is
x = (7/24)e−8t − (1/6)e−2t.

This starts above the axis crosses the axis once, then bottoms out and approaches the axis
from below. The point it crosses the axis is given by

(7/24)e−6t = 1/6, t =
1

6
ln(7/4).

4. Consider a particle of mass m moving in a one-dimensional potential,

V (x) = −k
x2

2
+ α

x4

4
.

(a) What is the angular frequency for small vibrations about the minimum of the poten-
tial? What is the effective spring constant?

(b) If you add a small force F = F0 cos(ωt − ϕ), and if the particle is initially at the
minimum with zero initial velocity, find its position as a function of time.

(c) If there is a small drag force−bv, repeat (b).

Solution:
The potential looks like:

x

0

V
(x

)

x0

Solve for the position of the minimum,

∂xV (x) = 0

−kx + αx3 = 0, xmin =
√

k/α.

The effective spring constant is the curvature at the minimum, i.e. the second derivative.

keff = ∂2
xV (x)

∣∣
xmin

= −k + 3αx2
min = 2k.

The angular frequency for small vibrations is then

ω0 =
√

2k/m.



This is the same as the solution for a regular particle, but with an offset by xmin. Take
solution from notes with β ̸= 0, then set β = 0. Note that δ will equal zero.

x = xmin + A1 cosω0t + A2 sinω0t +
(F0/m) cos(ωt− ϕ)

|ω2 − ω2
0|

. (3.1)

To solve for A1 and A2 consider the initial conditions,

0 = A1 +
(F0/m) cosϕ

|ω2 − ω2
0|

0 = ω0A2 −
(F0ω/m) sinϕ

|ω2 − ω2
0|

.

This coefficients are,

A1 = −
(F0/m) cosϕ

|ω2 − ω2
0|

, A2 =
(F0ω/m) sinϕ

ω0|ω2 − ω2
0|

.

If we add a damping force, and define β = b/2m, the general solutions are

x = xmin + A1e
−βt [cosω′t + A2 sinω′t] +

(F0/m) cos(ωt− ϕ− δ)

D
, (3.2)

D ≡
√
(ω0 − ω2)2 + 4β2ω2, ω′ ≡

√
ω2

0 − β2, δ ≡ arctan(2βω/(ω2
0 − ω2).(3.3)

The IC then constrain A1 and A2,

0 = A1 +
(F0/m) cos(ϕ + δ)

D

0 = ω′A2 −
(F0ω/m) sin(ϕ + δ)

D
,

A1 = −
(F0/m) cos(ϕ + δ)

D
,

A2 =
(F0ω/m) sin(ϕ + δ)

ω′D
.

5. Consider the periodic force, F (t + τ ) = F (t),

F (t) =

{
−A, −τ/2 < t < 0
+A, 0 < t >< τ/2

Find the coefficients fn and gn defined in Eq. (??).

Solution:
Since F is an odd function, fn = 0 and we have only the coefficients gn from Eq. (??)

gn =
2

τ

∫ τ/2

−τ/2

F (t′) sin(2nπt′/τ )dt′

=
4A

τ

∫ τ/2

0

sin(2nπt′/τ )dt′

=

{
4A
nπ

, n = odd
0, n = even



6. A “delta” function is a function that is zero everywhere except where the argument is zero.
At this point the function is infinite so that the area under the curve is unity. The delta
function obeys the relation ∫

dt′f(t′)δ(t′ − t0) = f(t0).

(a) Show that the following function

1

π

Λ

Λ2 + x2

∣∣∣∣
Λ→0

= δ(x).

i.e. show that it is zero everywhere except the origin and that it integrates to unity.

(b) A step function, Θ(t), a.k.a. the “Theta” function or the Heaviside function, is zero
for negative arguments and is unity for positive arguments. Show that

d

dx
Θ(x− x0) = δ(x− x0).

(c) Using the definition of Fourier coefficients in Eq.s (??) and (??), show that

δ(t− t0) = −
1

τ
+

2

τ

∞∑
n=0

cos(ωn(t− t0)), ωn = 2nπ/τ.

Solution: a) The function is clearly zero for x ̸= x0 and infinite for x = x0. To check that
it integrates to unity,

1

π

∫ ∞

−∞
dx

Λ

Λ2 + x2
= , u ≡ x/Λ

=
1

π

∫ ∞

−∞
du

1

1 + u2
, u ≡ tan θ, du = sec2 θdθ,

=
1

π

∫ tan−1(∞)

tan−1(−∞)

dθ = 1, because tan−1(∞) = π/2.

b) For all a and b ∫ b

a

dx
d

dx
Θ(x) = Θ(b)−Θ(a),∫ b

a

dx δ(x) = Θ(b)−Θ(a),

so integrands must be equal.



c)

fn =
2

τ

∫ τ/2

−τ/2

dt′ cos(nωt′)δ(t′ − t0) =
2

τ
cos(nωt0),

gn =
2

τ

∫ τ/2

−τ/2

dt′ sin(nωt′)δ(t′ − t0) =
2

τ
sin(nωt0),

δ(t− t0) =
1

τ
+

2

τ

∑
n>0

{cos(nωt0) cos(nωt) + sin(nωt0) sin(nωt)}

=
1

τ
+

2

τ

∑
n>0

cos(nω(t− t0)),

= −
1

τ
+

2

τ

∑
n≥0

cos(nω(t− t0)).

7. Consider the complex function in the interval−τ/2 < t < τ/2,

f(t) = −
1

τ
+

2

τ

∞∑
n=0

einω(t−t0), ω = 2π/τ.

(a) Using the fact that if one integrates over the interval,−τ/2 < t < τ/2, that
∫
dteinωt =

0 for n ̸= 0, show that ∫
dtf(t) = 1.

(b) Using the fact that
∑

n xn = 1/(1− x), show that

f(t) = −
1

τ
+

2/τ

1− eiω(t−t0)
.

(c) From the expression in (b), show that the real part of f(t) obeys

ℜf(t) = 0, for t ̸= t0

This shows that ℜf is a delta function and validates the result of the previous prob-
lem.

Solution:
(a) The integral for all n ̸= 0 is zero, thus∫ τ/2

−τ/2

dt f(t) =

∫ τ/2

−τ/2

dt

{−1
τ

+
2

τ

}
= 1.

(b) Let x = eiω(t−t0),

f(t) =
−1
τ

+
2

τ

1

1− x
=
−1
τ

+
2

τ

1

1− eiω(t−t0)
.



(c)

ℜf(t) =
−1
τ

+
1

τ

{
1

1− eiω(t−t0)
+

1

1− e−iω(t−t0)

}
=
−1
τ

+
1

τ

{
1− e−iω(t−t0)

(1− eiω(t−t0))(1− e−iω(t−t0))
+

1− eiω(t−t0)

(1− e−iω(t−t0))(1− eiω(t−t0)))

}

=
−1
τ

+
1

τ

{
2− e−iω(t−t0) − eiω(t−t0)

2− e−iω(t−t0) − eiω(t−t0)

}

= −
−1
τ

+
1

τ
= 0.

8. A particle of mass m in an undamped harmonic oscillator with angular frequency ω0 is at
rest in the bottom of the well, when it experiences a force

F (t) =


0, t < 0
G, 0 < t < τ
0, t > τ

Find x(t) for t > τ .

Solution::
From Eq. (??),

x(t) =
1

mω′

∫ t

−∞
dt′ F (t′)e−β(t−t′) sin[ω′(t− t′)]

=
G

mω′

∫ τ

0

dt′e−β(t−t′) sin[ω′(t− t′)]

=
G

2imω′

∫ τ

0

dt′
[
e(−β+iω′)(t−t′) − e(−β−iω′)(t−t′)

]
=

G

2imω′

{
e(−β+iω′)(t−τ) − e(−β+iω′)t

(−β + iω′)
−

e(−β−iω′)(t−τ) − e(−β−iω′)t

(−β − iω′)

}

= −
G

mω′
e−βtℑ

{
eiϕ(eβτeiω′(t−τ) − eiω′t)√

β2 + ω′2

}
, ϕ ≡ − arctanω′/β

=
−G
mω′

e−βt

{
eβτ sin(ω′(t− τ )− ϕ)− sin(ω′t− ϕ)√

β2 + ω′2

}

9. Consider a particle of mass m in a harmonic oscillator with angular frequency ω0 and no
damping. It experiences an external force,

F (t) = f0Θ(t)e−γt.

A “Theta” function is a step function, and is zero for negative arguments and unity for
positive arguments.



(a) Find a particular solution, xp(t), assuming it is proportional to e−γt.

(b) For a particle initially at rest at the origin at t = 0, find x(t) by adding in the homoge-
nous solutions and matching the BC to determine the arbitrary constants.

(c) Use Eq. (??) to find x(t). Check that you get the same result as (b).

Solution:
(a)

xp(t) = De−γt,(
γ2 + ω2

0

)
De−γt = (f0/m)e−γt,

D =
f0/m

γ2 + ω2
0

.

(b)

x = A cosω0t + B sinω0t + De−γt, (3.4)

0 = A + D, A = −D = −
f0/m

γ2 + ω2
0

, (3.5)

v = −ω0A sinω0t + ω0B cosω0t− γDe−γt (3.6)
0 = ω0B − γD, (3.7)

B =
γ

ω0

D. (3.8)

(c)

x(t) =
f0

mω0

∫ t

0

dt′ e−γt′ sinω0(t− t′), (3.9)

=
f0

2mω0i

∫ t

0

dt′ e−γt′
(
eiω0(t−t′) − e−iω0(t−t′)

)
(3.10)

=
f0

2mω0i

(
e−γt − eiω0t

−γ − iω0

−
e−γt − e−iω0t

−γ + iω0

)
(3.11)

=
f0

2mω0i

(e−γt − eiω0t)(−γ + iω0)− (e−γt − e−iω0t)(−γ − iω0)

γ2 + ω2
0

(3.12)

=
f0

2mω0i(γ2 + ω2
0)

{
γeiω0t − γe−iω0t + 2iω0e

−γt − iω0e
iω0t + iω0e

−iω0t
}

(3.13)

=
f0

mω0(γ2 + ω2
0)

{
γ sinω0t− ω0 cosω0t + ω0e

−γt
}
. ✓ (3.14)



4 Chapter 4 Solutions

1. Approximate Earth as a solid sphere of uniform density and radius R = 6360 km. Sup-
pose you drill a tunnel from the north pole directly to another point on the surface de-
scribed by a polar angle θ relative to the north pole. Drop a mass into the hole and let
it slide through tunnel without friction. Find the frequency f with which the mass oscil-
lates back and forth. Ignore Earth’s rotation. Compare this to the frequency of a low-lying
circular orbit.

Solution:
Choose the center of the tunnel as the center of the coordinate system, with x = 0. The
force along the direction of the tunnel is

Fx = mg(r)
x

r
.

Because g(r) = g(R)r/R, where R is the Earth’s radius,

Fx = mg(R)
x

R
,

and the angular frequency and period are:

ω =

√
mg(R)

mR
=

√
9.8 m/s2/6.37× 106 m

T =
2π

ω
= 5063 seconds = 84 minutes.

The frequency is then

f = 1/T = 0.0119 oscillations/minute.

All tunnels can take you from any point to any other point on the planet in T/2 = 42
minutes.

2. Consider the gravitational field of the moon acting on the Earth.

(a) Calculate the term k in the expansion

gmoon = g0 + kz + · · · ,

where z is measured relative to Earth’s center and is measured along the axis connect-
ing the Earth and moon. Give your answer in terms of the distance between the moon
and the earth, Rm and the mass of the moon Mm.

(b) Calculate the difference between the height of the oceans between the maximum and
minimum tides. Express your answer in terms of the quantities above, plus Earth’s
radius, Re. Then give you answer in meters.



Solution:

k = ∂R

GMm

R2
= −

2GMm

R3
,

where R is the distance between the Earth and moon. The surface of the ocean should be
at equipotential,

1

2
kz2 + mgh = Constant =

1

2
kR2

earth cos
2 θ + mgh(θ).

This gives

h(θ = 0)− h(θ = π/2) =
1

2
kR2

earth/mg =
GMR2

earth

gR3
= 0.70 m.

3. Consider an ellipse defined by the sum of the distances from the two foci being 2D, which
expressed in a Cartesian coordinates with the middle of the ellipse being at the origin
becomes √

(x− a)2 + y2 +
√

(x + a)2 + y2 = 2D.

Here the two foci are at (a, 0) and (−a, 0). Show that this form is can be written as

x2

D2
+

y2

D2 − a2
= 1.

Solution:

4D2 = 2(x2 + y2) + 2a2

+[(x− a)2 + y2]1/2[(x + a)2 + y2]1/2[
(2D2 − a2)− (x2 + y2)

]2
= [(x− a)2 + y2][(x + a)2 + y2]

(x2 + y2)− 2(2D2 − a2)(x2 + y2) + (2D2 − a2)2 = (x2 + y2 + a2)2 − 4x2a2

(x2 + y2)
(
2(2D2 − a2) + 2a2

)
− 4x2a2 = 4D4 − 4D2a2

x2(4D2 − 4a2) + y2(4D2) = 4(D2 − a2)D2

x2

D2
+

y2

D2 − a2
= 1.

4. Consider a particle in an attractive inverse-square potential, U(r) = −α/r, where the
point of closest approach is rmin and the total energy of the particle is E. Find the param-
eter A describing the trajectory in Eq. (??). Hint: Use the fact that at rmin there is no radial
kinetic energy and E = −α/rmin + L2/2mr2

min.

Solution:



r =
1

(mα/L2) + A cos(θ − θ0)
,

rmin =
1

(mα/L2) + A
,

E =
L2

2mr2
min

−
α

rmin

,

L2 = 2mEr2
min + 2mαrmin

The last expression was found by solving the quadratic equation for 1/rmin. Now, one can
solve for A

A =
1

rmin

−
mα

L2

=
1

rmin

−
α

2Er2
min + 2αrmin

This gives

r =
1

(mα)/(2mEr2
min + 2mαrmin) + [1/rmin − α/(2Er2

min + 2αrmin)] cos θ

=
rmin

α/(2Ermin + 2α) + [1− α/(2Ermin + 2α)] cos θ

= rmin

2(E + α/rmin)

α/rmin + [2E + α/rmin] cos θ
.

5. Consider the effective potential for an attractive inverse-square-law force, F = −α/r2.
Consider a particle of mass m with angular momentum L.

(a) Find the radius of a circular orbit by solving for the position of the minimum of the
effective potential.

(b) What is the angular frequency, θ̇, of the orbit? Solve this by setting F = mθ̇2r.

(c) Find the effective spring constant for the particle at the minimum.

(d) What is the angular frequency for small vibrations about the minimum? How does
the compare with the answer to (b)?

Solution:
a)

d

dr

(
L2

2mr2
−

α

r

)
= 0,

L2

mr3
min

=
α

r2
min

,

rmin =
L2

mα
.



b)
α

r2
min

= mθ̇2rmin,

θ̇ =

√
α

mr3
min

=

√
m2α4

L6
=

mα2

L3
.

c)

keff =
d2

dr2
Ueff = 3

L2

mr4
min

− 2
α

r3
min

=
α

r3
min

=
m3α4

L6

d)

ω =
√
keff/m =

mα2

L3
.

6. Consider a particle of mass m moving in a potential

U = α ln(r/a).

(a) If the particle is moving in a circular orbit of radius R, find the angular frequency θ̇.
Solve this by setting F = mθ̇2r.

(b) Express the angular momentum L in terms of α, m and R. Also express R in terms
of L, α and m.

(c) Sketch the effective radial potential, Veff(r), for a particle with angular momentum L.
(No longer necessarily moving in a circular orbit.)

(d) Find the position of the minimum of Veff in terms of L, α and m, then compare to the
result of (b).

(e) What is the effective spring constant for a particle at the minimum of Veff? Express
your answer in terms of L, m and α.

(f) What is the angular frequency, ω, for small oscillations of r about the Rmin? Express
your answer in terms of θ̇ from part (a).

Solution:
a)

F = ma

−
α

R
= −mθ̇2R,

θ̇ =

√
α

mR2
.

b)

L = mR2θ̇ =
√
mR2α

R =

√
L2

mα
.



c)

Veff =
L2

2mr2
+ α ln r.

d)

d

dr
Veff = 0

−
L2

mr3
min

+
α

rmin

= 0,

rmin =

√
L2

mα
, ✓.

e)

keff = −
α

r2
min

+ 3
L2

mr4
min

= 2
mα2

L2

f)

ω =

√
keff

m
=

α

L

√
2 = θ̇

√
2.

7. Consider a particle of mass m in an attractive potential, U(r) = −α/r, with angular
momentum L with just the right energy so that

A = mα/L2

where A comes from the expression

r =
1

(mα/L2) + A cos θ
.

The trajectory can then be rewritten as

r =
2r0

1 + cos θ
, r0 =

L2

2mα
.

(a) Show that for this case the total energy E approaches zero.

(b) Write this trajectory in a more recognizable parabolic form,

x = x0 −
y2

R
.

I.e., express x0 and R in terms of r0.

(c) Explain how a particle with zero energy can have its trajectory not go through the
origin.

(d) What is the scattering angle for this trajectory?



Solution:
a) Substitute for r0 in the first term for the energy below,

E =
L2

2mr2
0

−
α

r0
=

α

r0
−

α

r0

b)

r(1 + cos θ) = 2r0,

r + x = 2r0,

r2 = (2r0 − x)2 = 4r2
0 − 4r0x + x2 = x2 + y2,

y2 = 4r2
0 − 4r0x,

x = r0 −
y2

4r0
.

c) The energy E → 0, but the combination p2
0b

2 = L2 is finite, i.e. b → ∞. For a finite
b the particle would indeed go through the origin. One way to put it, is that a particle on
this trajectory never gets to infinity, so the questions is somewhat moot.

d) The angles for which r →∞ are θ′ = ±π, so θs = π.

8. Show that if one transforms to a reference frame where the total momentum is zero, p⃗1 =
−p⃗2, that the relative momentum q⃗ corresponds to either p⃗1 or −p⃗2. This means that in
this frame the magnitude of q⃗ is one half the magnitude of p⃗1 − p⃗2.

Solution:
Boost by the center-of-mass velocity.

q⃗ = µ(v⃗1 − v⃗2) = µ

(
p⃗1

m1

−
p⃗2

m2

)
.

If p⃗2 = −p⃗1,

q⃗ = µ

(
1

m1

+
1

m2

)
p⃗1 = p⃗1.

One can repeat by substituting for p⃗1 instead, then q⃗ = p⃗2.

9. Given the center of mass coordinates R⃗ and r⃗ for particles of mass m1 and m2, find the
coordinates r⃗1 and r⃗2 in terms of R⃗ and r⃗ and the masses.

Solution:

r = r1 − r2,

R =
1

m1 + m2

(m1r1 + m2r2)

r + R
m1 + m2

m2

= r1

(
1 +

m1

m2

)
= r1

m1 + m2

m2

,

r1 =
r + R(m1 + m2)/m2

(m1 + m2)/m2

= R +
m2

m1 + m2

r.



Similarly

r2 = R−
m1

m1 + m2

r.

10. Consider two particles of identical mass scattering at an angle θcm in the center of mass.

(a) In a frame where one is the target (initially at rest) and one is the projectile, find the
scattering angle in the lab frame, θ, in terms of θcm.

(b) Express dσ/d cos θ in terms of dσ/d cos θcm. I.e., find the Jacobian for d cos θcm/d cos θ
in terms of cos θcm.

Solution:
In the center-of-mass frame (primed momenta)

p′
x = px −mVcm = px − |p0|/2,

p′
y = py.

Here p0 is the initial momentum in the lab frame which equals 2p′. Solving for px,

px = p′(1 + cos θ′)

cos θ =
px√

p2
x + p2

y

=
p′(1 + cos θ′)√

p′2(1 + cos θ′)2 + p′2 sin2 θ′

=
√

(1 + cos θ′)/2,

d cos θ

d cos θ′
=

1

2
√

2(1 + cos θ′)
,

d cos θ′

d cos θ
= 2

√
2(1 + cos θ′).

11. Assume you are scattering alpha particles (He-4 nuclei Z = 2, A = 4) off of a gold target
(Z = 79, A = 197). If the radius of the nucleus is 7.5 × 10−15 meters, and if the energy
of the beam is 38 keV,

(a) What is the total cross section for having a nuclear collision? Give the answer in
millibarns, 1 mb= 10−31 m2.

(b) Find the scattering angle (in degrees) at which the Rutherford differential cross section
formula breaks down?

Solution:
a) Use conservation of L to find the angular momentum at R,

L2

2mR2
−

α

R
= E,

L2 = 2mR2

(
E +

α

R

)
.



The impact parameter can be found using L = p0b,

b2 =
L2

p2
0

=
L2

2mE
= R2

E + α
R

E
,

σ = πb2 = πR2
E + α

R

E
.

Plugging in numbers σ = 1400 barns

b) Use Eq. (4.37)

sin(θs/2) =
a

√
a2 + b2

, a ≡
α

2E
, b = from step a. (4.1)

Plugging in numbers, θs = 83 degrees.

12. A point particle is fired at a spherical target of
radius R. The particle bounces off the target
elastically with scattering angle θs. The angle
ϕ in the figure is only meant to show that for
a plane tangent to the surface, the angles rel-
ative to the surface are equal for the incoming
and outgoing trajectories.

Φ

Φ

θs

R

b

(a) Find the differential cross section dσ/dΩ = (1/2π)(dσ/d cos θs).

(b) Integrate dσ/dΩ to obtain the total cross section.

Solution:
a) First relate b to θs. From trignometry

b = R sin

[
(π − θs)

2

]
,

|dσ| = 2πbdb = 2πR2 sin

[
(π − θs)

2

]
cos

[
(π − θs)

2

]
dθs

2

= ]
1

2
πR2 sin [(π − θs)] dθs

= π
2
R2d cos θs,

dσ

2πd cos θs

= R2

4
.

b) Integrating the constant,

σ =

∫
dΩ

dσ

dΩ
= πR2 ✓ (4.2)



5 Chapter 5 Solutions

1. Consider a pail of water spinning about a vertical axis at the center of the pail with fre-
quency ω. Find the height of the water (within a constant) as a function the radius r⊥ from
the axis of rotation. Use the concept of a centrifugal potential in the rotating frame.

Solution:
The effective potential for a drop of mass δm depends on its position,

δPE = −
1

2
δmω2r2 + δmgy.

This must be constant on the surface, y → h(r),

δmgh(r) =
1

2
δmω2r2,

h(r) =
1

2

ω2r2

g
.

2. A high-speed cannon shoots a projectile with an initial velocity of 1000 m/s in the east
direction. The cannon is situated in Minneapolis (latitude of 45 degrees) The projectile
velocity is nearly horizontal and it hits the ground after a distance x = 3000 m. Find the
alteration of the point of impact in the north-south (y) direction due to the Coriolis force.
Assume the effect is small so that you can approximate the eastward (x) component of the
velocity as being constant. Be sure to indicate whether the deflection is north or south.

Solution:
Let y be the north-south direction,

dvy

dt
= −2ωzvx + 2ωxvz,

ωz = ωearth/
√
2, ωx = 0,

vy ≈ −2ωearthvxt/
√
2,

δy ≈ −ωearthvxt
2/
√
2

≈ −
ωearthx

2

vx

√
2

.

This comes out to 0.46 meters south. The approximations are because you assume vx is
constant, whereas it does change ever so slightly due to the Coriolis force.

3. Someone wishes to use a Foucault pendulum as a crude clock. If the person lives in Min-
neapolis, how much time will pass between having the pendulum swinging in the east-
west direction until it swings in the north-south direction.

Solution:
From the Foucalt example in the lecture notes

Ωz = |Ω|/
√
2,

T =
2π

Ωz

=
2π

(2π/(24 hours))

√
2



The time required is one fourth a period or 6 hours×
√
2 ≈ 8.5 hours.



6 Chapter 6 Solutions

1. Consider a hill whose height y is given as a function of the horizontal coordinate x. Con-
sider a segment of the hill from x = 0 to x = L with initial height y(x = 0) = 0 and
whose final height is y(x = L) = −h. Transforming the last equation in Example for a
downward vertical force rather than a horizontal force,

x = −
√
−2ay − y2 + a arccos(1 + y/a).

Consider a wheel of radius a rolling along the bottom of the x axis. Mark a point on the
top of the wheel, which is originally at the origin, x = y = 0, when the top of the wheel
touches the origin. As the wheel rolls by an angle θ the marked point moves due to both
the translation and the rotation of the wheel. The y coordinate of the marked point is

y = −a(1− cos θ),

whereas the x coordinate is
x = aθ − a sin θ.

The first term is due to the horizontal translation of the axis, while the second term arises
from the rotation of the wheel. Re-express these two equations to find x(y).

cos θ = 1 +
y

a
,

θ = arccos (1 + y/a) ,

x = a arccos (1 + y/a)− a
√

1− cos2 θ

= a arccos (1 + y/a)− a

√
−2

y

a
−

y2

a2

= −
√
−2ay − y2 + a arccos (1 + y/a) .

2. Consider a chain of length L that hangs from two supports of equal height stretched from
x = −X to x = +X . The general solution for a catenary is

y = λ + a cosh[(x− x0)/a],

(a) Using symmetry arguments, what is x0.

(b) Express the length L in terms of X and a.

(c) Numerically solve the transcendental equation above to find a in terms of L = 10 m
and X = 4 m.

Solution:
a) x0 = 0
b)

L = 2

∫ X

0

dx

√
1 + sinh2(x/a) = 2a sinh(X/a).

c) Program based on what was done in class. Note as a→∞ that L = 2X as expected.



3. Consider a mass m connected to a spring with spring constant k. Rather than being fixed,
the other end of the spring oscillates with frequency ω and amplitude A. For a generalized
coordinate, use the displacement of the mass from its relaxed position and call it y =
x− ℓ−A cosωt.

(a) Write the kinetic energy in terms of the generalized coordinate.

(b) Write down the Lagrangian.

(c) Find the equations of motion for y.

Solution:

a) T =
1

2
m (ẏ + ωA sinωt)2

b) L =
1

2
m (ẏ + ωA sinωt)2 −

1

2
ky2

c) m
d

dt
(ẏ + ωA sinωt) = −ky,

mÿ + mω2A cosωt = −ky.

This looks like a driven harmonic oscillator

mÿ + ky = mω2A cosωt.

4. Consider a bead of mass m on a circular wire of radius R. Assume a force kx acts on
the spring, where x is measured from the center of the circle. Using θ as the generalized
coordinate (measured relative to the x axis),

(a) Write the Lagrangian in terms of θ.

(b) Find the equations of motion.

Solution:

a) T =
1

2
mR2θ̇2,

V = −
1

2
k(x−R)2 = 1

1

2
R2 cos2 θ,

L =
1

2
mR2θ̇2 +

1

2
kR2 cos2 θ.

b) mR2θ̈ = −kR2 sin θ cos θ,

θ̈ = −ω2
0 sin θ cos θ, ω2

0 ≡ k/m.

5. Consider a pendulum of length ℓ with all the mass m at its end. The pendulum is allowed
to swing freely in both directions. Using ϕ to describe the azimuthal angle about the z axis
and θ to measure the angular deviation of the pendulum from the downward direction,
address the following questions:



(a) If the pendulum is initially moving horizontally with velocity v0 and angle θ0 = 90◦

(horizontal), use energy and angular momentum conservation to find the minimum
angles of θmin subtended by the pendulum. (Note that the angle will oscillate between
90◦ and the minimum angle.

(b) Write the Lagrangian using θ and ϕ as generalized coordinates.
(c) Write the equations of motion for θ and ϕ.
(d) Rewrite the equations of motion for θ using angular momentum conservation to elim-

inate and reference to ϕ.
(e) Find the value of L required for the stable orbit to be at θ = 45◦.
(f) For the steady orbit found in (e) consider small perturbations of the orbit. Find the

frequency with which the pendulum oscillates around θ = 45◦.

Solution:
a) The kinetic energy from the θ motion disappears at the maximum and minimum angles.
The remaining potential energy and kinetic energy due to ϕ̇ must be equal at these two
angles.

1

2
mv2

0 = −mgℓ cos θmin +
1

2
mv2(θmin)

= −mgℓ cos θmin +
L2

2mℓ2 sin2 θmin

, L = mv0ℓ

Using the fact that
L2

2mℓ2
=

1

2
mv2

0,

the equation for θmin is then

−
1

2
mv2

0 cos
2 θmin = −mgℓ cos θmin sin

2 θmin,

1

2
v2
0 cos θmin = gℓ(1− cos2 θmin).

One can now solve for θmin,

cos θmin =
√

α2 + 1− α,

α =
v2
0

4gℓ
.

b)

L =
1

2
mℓ2θ̇2 +

1

2
mℓ2 sin2 θϕ̇2 + mgℓ cos θ.

c)

mℓ2θ̈ = −mgℓ sin θ + mℓ2 sin θ cos θϕ̇2,

θ̈ = −
g

ℓ
sin θ + ϕ̇2 sin θ cos θ,

d

dt

(
mℓ2 sin2 θϕ̇

)
= 0,

sin2 θϕ̇ = constant.



d)

θ̈ = −
g

ℓ
sin θ +

L2

m2ℓ4 sin4 θ
sin θ cos θ,

θ̈ = −
g

ℓ
sin θ +

L2

m2ℓ4
cos θ

sin3 θ
.

e)

g

ℓ
sin θ =

L2

m2ℓ4
cos θ

sin3 θ
,

L2 =
sin4 θ

cos θ
(m2gℓ3),

L =
1

23/2

√
m2gℓ2 for θ = 45◦.

f)

θ̈ = −
g

ℓ
sin θ +

L2

m2ℓ4
cos θ

sin3 θ
,

θ̈ = −
g

ℓ
cos θδθ −

L2

m2ℓ4

(
1

sin2 θ
+ 3

cos2 θ

sin4 θ

)
δθ,

ω2 =
g

ℓ

1
√
2
+ 8

L2

m2ℓ4

=
1
√
2

g

ℓ
+

8L2

m2ℓ4
.

6. Consider a mass m that is connected to a wall by a spring with spring constant k. A second
identical mass m is connected to the first mass by an identical spring. Motion is confined
to the x direction.

(a) Write the Lagrangian in terms of the positions of the two masses x1 and x2.

(b) Find the equations of motion.

(c) Find two solutions of the type

x1 = Aeiωt, x2 = Beiωt.

Solve for A/B and ω. Express your answers in terms of ω2
0 = k/m.

Solution:
a)

T =
1

2
mẋ2

1 +
1

2
mẋ2

2,

V =
1

2
kx2

1 +
1

2
(x1 − x2)

2,

L = T − V.



b)

mẍ1 = −kx1 − k(x1 − x2)

= −2kx1 + kx2,

mẍ2 = −k(x2 − x1).

c)

x1 = Aeiωt, x2 = Beiωt,

−mω2A = −2kA + kB,

−mω2B = −kB + kA.

Divide both sides by B

ω2

(
A

B

)
= 2ω2

0

(
A

B

)
− ω2

0,

−ω2 = −ω2
0 + ω2

0

(
A

B

)
,

ω2
0 ≡

k

m
.

Treat A/B and ω2 and ω2 as unknowns. Solve the 2 eq.s. 2 unknowns and get

ω2

(
1−

ω2

ω2
0

)
= ω2

0 − 2ω2,

ω4 − 3ω2
0ω

2 + ω4
0 = 0,

ω2 = ω2
0

3±
√
5

2
.

The two values A/B are

A/B =

(
1−

ω2
±

ω2
0

)
= −

1

2
±
√
5

2
.

7. Consider two masses m1 and m2 interacting according to a potential V (r⃗1 − r⃗2).

(a) Write the Lagrangian in terms of the generalized coordinates R⃗cm = (m1r⃗1+m2r⃗2)/(m1+
m2) and r⃗ = r⃗1 − r⃗2 and their derivatives.

(b) Using the independence of L with respect to R⃗cm, identify a conserved quantity.

Solution:
a)

L =
1

2
M

˙⃗
R2 +

1

2
µ ˙⃗r2,−V (r⃗),

M = m1 + m2,

µ =
m1m2

m1 + m2

.



b)

d

dt

(
M

˙⃗
R
)

= 0,

˙⃗
R = constant.

The center of mass velocity is constant.
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