your names_

Physics 321 Exercise, Nov. 27, 2023

Turn in your own assignment, but discuss with all yourn neighbors.

1. (10 pts) Consider a mass m that moves according to the following potential,

$$V(x, y, z) = \frac{kz^2}{(z^4 + a^4)(x^2 + y^2)}$$

Which of the following quantities are conserved? (Momentum is \vec{p} , angular momentum is \vec{L} and the energy is E) Circle the conserved quantities.

- a) p_x
- b) p_y
- c) p_z
- d) $p_x + p_y$
- e) $p_x p_y$
- f) $p_x + p_z$
- g) $p_x p_z$
- h) $p_y + p_z$
- i) $p_y p_z$
- j) L_x
- k) L_y
- l) L_z
- m) $L_x + L_y$
- n) $L_x L_y$
- o) $L_x + L_z$
- p) $L_x L_z$
- q) $L_y + L_z$
- $\mathbf{r}) \quad L_y L_z$
- s) E
- t) $|\vec{p}|$
- u) $|\vec{L}|$

Solution: There is rotational symmetry about the z axis. So only L_z and E are conserved (for any trajectory).

2. (10 pts) Consider a mass m that moves according to the following potential,

$$V(x, y, z) = \frac{k}{(x+y)^2}.$$

Which of the following quantities are conserved? (Momentum is \vec{p} , angular momentum is \vec{L} and the energy is E)

Circle the conserved quantities (for any trajectory).

- a) p_x
- b) p_y
- c) p_z
- d) $p_x + p_y$
- e) $p_x p_y$
- f) $p_x + p_z$
- g) $p_x p_z$
- h) $p_y + p_z$
- i) $p_y p_z$
- j) L_x
- k) L_y
- l) L_z
- m) $L_x + L_y$
- n) $L_x L_y$
- o) $L_x + L_z$
- p) $L_x L_z$
- q) $L_y + L_z$
- r) $L_y L_z$
- s) E
- t) $|\vec{p}|$
- u) $|\vec{L}|$

Solution: Define the variables

$$\tilde{x} = (x+y)/\sqrt{2}, \quad \tilde{y} = (x-y)/\sqrt{2}, \quad \tilde{z} = z$$

 $\tilde{p}_x = m(\dot{x}+\dot{y})/\sqrt{2}, \quad \tilde{p}_y = m(\dot{x}-\dot{y})/\sqrt{2}, \quad \tilde{p}_z = m\dot{z}.$

The potential and kinetic energies are

$$T = \frac{m}{2}(\dot{\tilde{x}}^2 + \dot{\tilde{y}}^2 + \dot{\tilde{z}}^2),$$
$$V = \frac{k}{2\tilde{x}^2}.$$

One can then see that the conserved quantities are: $E, \tilde{p}_y, \tilde{p}_z, \tilde{L}_x$, and linear combinations of \tilde{p}_y and \tilde{p}_z . In the original coordinate system these are: $E, (p_x - p_y)/\sqrt{2}, p_z, (L_x + L_y)/\sqrt{2}$ and linear combinations of $(p_x - p_y)$ and p_z . Thus you should circle: $E, (p_x - p_y), p_z$ and $L_x + L_y$.