\qquad

Exercise, Monday, Nov. 14, 2022

You wish to find the fastest route for a paddle boat, which moves with speed V_{0} on still water, to travel a distance L, from $x=y=0$ to $x=L, y=0$. There is a current also moving in the x direction, but depending on y. The current's speed is $w_{x}=\alpha y$. Rather than minimizing the time to go a distance L, we will maximize the distance L one travels in a net time T. This will result in the same trajectory once the time is adjusted so the distance is indeed L. That distance is

$$
L=\int_{0}^{t} d t^{\prime} \frac{d x}{d t}\left(y, y^{\prime}\right), \quad y^{\prime} \equiv d y / d t
$$

Our goal is use the Euler-Lagrange equation to solve for $y(t)$.

1. (10 pts) Express $d x / d t$ in terms of w_{x}, V_{0} and y^{\prime}.
2. (10 pts) Using the expression for x above, write a 2 nd-order differential equation for $y(t)$ from the Euler-Lagrange equations. The equation should be in terms of L, α and $w_{x}, y, d^{2} y / d t^{2}$ and $d y / d t$. Arrange answer in the form:

$$
\frac{d^{2} y}{d t^{2}}=\text { function of everything else }
$$

3. (20 extra credit quiz points - will probably take a few hours) Write a program to solve the Euler-Lagrange equation. Use $\alpha=0.001 \mathrm{~s}^{-1}, T=1$ hour, and $V_{0}=10 \mathrm{~m} / \mathrm{s}$. What is the maximum value of y for this trajectory? What is the distance traveled in the x direction for this trajectory?
HINT: Might be less difficult to solve for $y^{\prime}=d y / d t$ from mid-point of trajectory to end, using fact that (by symmetry) $y^{\prime}(x=L / 2)=0$.

Extra-credit portion can be turned in Monday, which should include printout of program and the value of $y_{\text {max }}$.

Solution:

a)

$$
v_{x}\left(y, y^{\prime} ; t\right)=\alpha y+\sqrt{V_{0}^{2}-y^{\prime 2}}
$$

b)

$$
\begin{aligned}
\frac{d}{d t} \frac{\partial v_{x}}{\partial y^{\prime}} & =\frac{\partial v_{x}}{\partial y} \\
\frac{d}{d t} \frac{-\alpha y^{\prime}}{\sqrt{V_{0}^{2}-y^{\prime 2}}} & =\alpha \\
y^{\prime \prime}\left\{\frac{-\alpha}{\sqrt{V_{0}^{2}-y^{\prime 2}}}-\frac{\alpha y^{\prime 2}}{\left(V_{0}^{2}-y^{\prime 2}\right)^{3 / 2}}\right\} & =\alpha \\
y^{\prime \prime} & =-\alpha \frac{\left(V_{0}^{2}-y^{\prime 2}\right)^{3 / 2}}{V_{0}^{2}} .
\end{aligned}
$$

Extra Credit:

To solve this first write equation as

$$
\frac{d y^{\prime}}{\left(V_{0}^{2}-y^{\prime 2}\right)^{3 / 2}}=-\alpha V_{0}^{2} d t
$$

Integrate both sides. But to make life easier, work in terms of variable $t^{\prime}=t-T / 2$, because by symmetry $y^{\prime}\left(t^{\prime}=0\right)=y^{\prime}(t=T / 2)=0$. Then

$$
\int_{0}^{y^{\prime} / V_{0}} \frac{d u}{\left(1-u^{2}\right)^{3 / 2}}=-\alpha t^{\prime}
$$

To solve numerically, this give t^{\prime} for a given y^{\prime}. One can then integrate y^{\prime} to get $y\left(t^{\prime}\right)$. Because $y\left(t^{\prime}= \pm T / 2\right)=0$, one subtracts $y^{\prime}\left(t^{\prime}=T / 2\right)$ from the result for $y^{\prime}\left(t^{\prime}\right)$ to get $y\left(t^{\prime}\right)$. Once one knows y, along with y^{\prime} then one can express $v_{x}\left(t^{\prime}\right)$. Finally, one can integrate $v_{x}\left(t^{\prime}\right)$ to get $x^{\prime}\left(t^{\prime}\right)$, then subtract $x^{\prime}(-T / 2)$ to get $x\left(t^{\prime}\right)$. This is not an easy program to write.

Alternatively, one can also solve for all the relations analytically.

$$
\begin{aligned}
\frac{u}{\sqrt{1-u^{2}}} & =-\alpha t^{\prime}, \quad u=y^{\prime} / V_{0} \\
y^{\prime}\left(t^{\prime}\right) & =-V_{0} \frac{\alpha t}{\sqrt{1+\alpha^{2} t^{\prime 2}}} \\
t^{\prime} & =t-T / 2 .
\end{aligned}
$$

Next, integrate $y^{\prime}\left(t^{\prime}\right)$ to get $y\left(t^{\prime}\right)$. Choose arbitrary constant to ensure that $y\left(t^{\prime}=-T / 2\right)=$ $y\left(t^{\prime}=T / 2\right)=0$.

$$
\begin{aligned}
y\left(t^{\prime}\right) & =\frac{-V_{0}}{\alpha} \sqrt{1+\alpha^{2} t^{\prime 2}}+\frac{V_{0}}{\alpha} \sqrt{1+\alpha^{2}(T / 2)^{2}} \\
t^{\prime} & =t-T / 2
\end{aligned}
$$

Next, write down v_{x},

$$
\begin{aligned}
v_{x}\left(t^{\prime}\right) & =\alpha y+V_{0} \sqrt{1-\frac{\alpha^{2} t^{\prime 2}}{1+\alpha^{2} t^{\prime 2}}} \\
& =V_{0} \sqrt{1+\alpha^{2}(T / 2)^{2}}+V_{0}\left\{-\sqrt{1+\alpha^{2} t^{\prime 2}}+\sqrt{1-\alpha^{2} t^{\prime 2} /\left(1+\alpha^{2} t^{\prime 2}\right)}\right\} \\
& =V_{0} \sqrt{1+\alpha^{2}(T / 2)^{2}}+V_{0}\left\{-\sqrt{1+\alpha^{2} t^{\prime 2}}+1 / \sqrt{1+\alpha^{2} t^{\prime 2}}\right\}, \\
t^{\prime} & =t-T / 2 .
\end{aligned}
$$

Finally, integrate v_{x} to get $x\left(t^{\prime}\right)$. But first do an integral

$$
\begin{aligned}
\int d u \sqrt{1+u^{2}} & =\int d \theta \cosh ^{2} \theta, \quad u=\sinh \theta \\
& =\frac{1}{2} \int d \theta(1+\cosh 2 \theta)=\frac{1}{2}[\theta+\sinh 2 \theta / 2] \\
\int d u \sqrt{1+u^{2}} & =\frac{1}{2 \alpha}\left[\sinh ^{-1}\left(\alpha t^{\prime}\right)+\alpha t^{\prime} \sqrt{1+\alpha^{2} t^{\prime 2}}\right]
\end{aligned}
$$

The other integral yields an inverse sinh, and

$$
x^{\prime}\left(t^{\prime}\right)=V_{0} t^{\prime} \sqrt{1+\alpha^{2}(T / 2)^{2}}+\frac{V_{0}}{2 \alpha} \sinh ^{-1}\left(\alpha t^{\prime}\right)-\frac{V_{0} t^{\prime}}{2} \sqrt{1+\alpha^{2} t^{\prime 2}}
$$

The quantity x^{\prime} is the distance from the position at $T / 2$. To get x, one must add back in $x^{\prime}\left(t^{\prime}=T / 2\right)$. Here, $x(t=T)=2 x^{\prime}\left(t^{\prime}=T / 2\right)$,

$$
\begin{aligned}
x & =x^{\prime}\left(t^{\prime}\right)+x(t=T) / 2, \\
t^{\prime} & =t-T / 2, \\
x(t=T) & =\frac{V_{0} T}{2} \sqrt{1+\alpha^{2}(T / 2)^{2}}+\frac{V_{0}}{\alpha} \sinh ^{-1}(\alpha T / 2) .
\end{aligned}
$$

