\qquad
\qquad

Exercise, Monday, Nov. 6, 2023

You wish to find the fastest route for a paddle boat, which moves with speed V_{0} on still water, to travel a distance L, from $x=y=0$ to $x=L, y=0$. There is a current also moving in the x direction, but the current's velocity depends on y. The current's speed is $w_{x}=\alpha y$. Rather than minimizing the time to go a distance L, we will maximize the distance L one travels in a net time T. This will result in the same trajectory once the time is adjusted so the distance is indeed L. That distance is

$$
L=\int_{0}^{t} d t^{\prime} \frac{d x}{d t}\left(y, y^{\prime}\right), \quad y^{\prime} \equiv d y / d t
$$

Our goal is use the Euler-Lagrange equation to solve for $y(t)$.

1. $(10 \mathrm{pts})$ Express $d x / d t$ in terms of w_{x}, V_{0} and y^{\prime}.
2. (10 pts) Using the expression for x above, write a 2 nd-order differential equation for $y(t)$ from the Euler-Lagrange equations. The equation should be in terms of L, α and $w_{x}, y, d^{2} y / d t^{2}$ and $d y / d t$. Arrange answer in the form:

$$
\frac{d v_{y}}{d t}=\text { function of everything else including } v_{y}
$$

3. (5 pts) Using symmetry arguments, at what time does $v_{y}=0$?
4. (10 pts) The solution to the above differential equation is:

$$
\begin{aligned}
v_{y}\left(t^{\prime}\right) & =-V_{0} \frac{\alpha t^{\prime}}{\sqrt{1+\alpha^{2} t^{\prime 2}}}, \\
t^{\prime} & =t-T / 2
\end{aligned}
$$

Edit the python template and plot x vs t. Use $T=1$ hour, $V_{0}=10 \mathrm{~m} / \mathrm{s}$, and $\alpha=0.001 \mathrm{~s}^{-1}$.

If you were to solve everything analytically:

To solve this first write equation as

$$
\frac{d y^{\prime}}{\left(V_{0}^{2}-y^{\prime 2}\right)^{3 / 2}}=-\alpha V_{0}^{2} d t
$$

Integrate both sides. But to make life easier, work in terms of variable $t^{\prime}=t-T / 2$, because by symmetry $y^{\prime}\left(t^{\prime}=0\right)=y^{\prime}(t=T / 2)=0$. Then

$$
\int_{0}^{y^{\prime} / V_{0}} \frac{d u}{\left(1-u^{2}\right)^{3 / 2}}=-\alpha t^{\prime}
$$

To solve numerically, this give t^{\prime} for a given y^{\prime}. One can then integrate y^{\prime} to get $y\left(t^{\prime}\right)$. Because $y\left(t^{\prime}=\right.$ $\pm T / 2)=0$, one subtracts $y^{\prime}\left(t^{\prime}=T / 2\right)$ from the result for $y^{\prime}\left(t^{\prime}\right)$ to get $y\left(t^{\prime}\right)$. Once one knows y, along with y^{\prime} then one can express $v_{x}\left(t^{\prime}\right)$. Finally, one can integrate $v_{x}\left(t^{\prime}\right)$ to get $x^{\prime}\left(t^{\prime}\right)$, then subtract $x^{\prime}(-T / 2)$ to get $x\left(t^{\prime}\right)$. This is not an easy program to write.
Alternatively, one can also solve for all the relations analytically.

$$
\begin{aligned}
\frac{u}{\sqrt{1-u^{2}}} & =-\alpha t^{\prime}, \quad u=y^{\prime} / V_{0} \\
y^{\prime}\left(t^{\prime}\right) & =-V_{0} \frac{\alpha t^{\prime}}{\sqrt{1+\alpha^{2} t^{\prime 2}}} \\
t^{\prime} & =t-T / 2
\end{aligned}
$$

Next, integrate $y^{\prime}\left(t^{\prime}\right)$ to get $y\left(t^{\prime}\right)$. Choose arbitrary constant to ensure that $y\left(t^{\prime}=-T / 2\right)=y\left(t^{\prime}=T / 2\right)=0$.

$$
\begin{aligned}
y\left(t^{\prime}\right) & =\frac{-V_{0}}{\alpha} \sqrt{1+\alpha^{2} t^{\prime 2}}+\frac{V_{0}}{\alpha} \sqrt{1+\alpha^{2}(T / 2)^{2}} \\
t^{\prime} & =t-T / 2
\end{aligned}
$$

Next, write down v_{x},

$$
\begin{aligned}
v_{x}\left(t^{\prime}\right) & =\alpha y+V_{0} \sqrt{1-\frac{\alpha^{2} t^{\prime 2}}{1+\alpha^{2} t^{\prime 2}}} \\
& =V_{0} \sqrt{1+\alpha^{2}(T / 2)^{2}}+V_{0}\left\{-\sqrt{1+\alpha^{2} t^{\prime 2}}+\sqrt{1-\alpha^{2} t^{\prime 2} /\left(1+\alpha^{2} t^{\prime 2}\right)}\right\} \\
& =V_{0} \sqrt{1+\alpha^{2}(T / 2)^{2}}+V_{0}\left\{-\sqrt{1+\alpha^{2} t^{\prime 2}}+1 / \sqrt{1+\alpha^{2} t^{\prime 2}}\right\} \\
t^{\prime} & =t-T / 2
\end{aligned}
$$

Finally, integrate v_{x} to get $x\left(t^{\prime}\right)$. But first do an integral

$$
\begin{aligned}
\int d u \sqrt{1+u^{2}} & =\int d \theta \cosh ^{2} \theta, \quad u=\sinh \theta \\
& =\frac{1}{2} \int d \theta(1+\cosh 2 \theta)=\frac{1}{2}[\theta+\sinh 2 \theta / 2] \\
\int d u \sqrt{1+u^{2}} & =\frac{1}{2 \alpha}\left[\sinh ^{-1}\left(\alpha t^{\prime}\right)+\alpha t^{\prime} \sqrt{1+\alpha^{2} t^{\prime 2}}\right]
\end{aligned}
$$

The other integral yields an inverse sinh, and

$$
\tilde{x}\left(t^{\prime}\right)=V_{0} t^{\prime} \sqrt{1+\alpha^{2}(T / 2)^{2}}+\frac{V_{0}}{2 \alpha} \sinh ^{-1}\left(\alpha t^{\prime}\right)-\frac{V_{0} t^{\prime}}{2} \sqrt{1+\alpha^{2} t^{\prime 2}}
$$

The quantity \tilde{x} is the distance from the position at $T / 2$. To get x, one must add back in $x\left(t^{\prime}=T / 2\right)$. Here, $x(t=T)=2 x\left(t^{\prime}=T / 2\right)$,

$$
\begin{aligned}
x & =\tilde{x}\left(t^{\prime}\right)+x(t=T) / 2 \\
t^{\prime} & =t-T / 2 \\
x(t=T) & =\frac{V_{0} T}{2} \sqrt{1+\alpha^{2}(T / 2)^{2}}+\frac{V_{0}}{\alpha} \sinh ^{-1}(\alpha T / 2)
\end{aligned}
$$

