your names_

PHY 321 Exercise 6: Earth's Orbit

Consider Earth as a point particle with mass, $m = 5.972 \times 10^{24}$ kg, in orbit around the sun, with mass $M = 1.998 \times 10^{30}$ kg. The potential energy is

$$V = -\frac{GMm}{r},$$

where $G = 6.674 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$.

- 1. (5pts) Show that the units for G are consistent with the equation above if the masses are in kg, the radius is in m and the potential is in joules.
- 2. Write the equations of motion for x and y, i.e.

$$\frac{d^2x}{dt^2} = \dots$$
$$\frac{d^2y}{dt^2} = \dots$$

in terms of x, y and GM.

- 3. (5 pts) The radius of Earth's orbit is 1.496×10^{11} m. If Earth's orbit is a circle, what is its speed, v_0 ?
- 4. (5 pts) The constant $GM = 1.333 \times 10^{20} \text{ m}^3 \text{s}^{-2}$ using the values above. What is GM in units of AU^3 years⁻²? The symbol AU stands for a unit of length where the radius of Earth's orbit is 1.0 (known as astronomical units). What is v_0 in these units?
- 5. (5 pts) Write a program that calculates x, y, v_x and v_y as a function of t. Set the initial conditions as $x = R_0$, y = 0, $v_x = 0$, $v_y = v_0$, where R_0 is the radius of Earth's orbit and v_0 is the velocity of Earth's orbit. Use units of AU for distance and years for time.
- 6. (5 pts) Plot the trajectory, y vs. x in units of AU over a time period of 3 years.
- 7. (5 pts) Plot the trajectory again, but with v_0 set to half the value of Earth's orbit velocity.
- 8. (5 pts) Plot the kinetic energy, potential energy and total energy as a function of time for the last problem. Divide all the energies by m, i.e. plot E/m. Use units of AU²/years².