\qquad
\qquad

PHY 321 Exercise 6: Earth's Orbit

Consider Earth as a point particle with mass, $m=5.972 \times 10^{24} \mathrm{~kg}$, in orbit around the sun, with mass $M=1.998 \times 10^{30} \mathrm{~kg}$. The potential energy is

$$
V=-\frac{G M m}{r}
$$

where $G=6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.

1. (5pts) Show that the units for G are consistent with the equation above if the masses are in kg , the radius is in m and the potential is in joules.
2. Write the equations of motion for x and y, i.e.

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\ldots \\
& \frac{d^{2} y}{d t^{2}}=\ldots
\end{aligned}
$$

in terms of x, y and $G M$.
3. (5 pts) The radius of Earth's orbit is $1.496 \times 10^{11} \mathrm{~m}$. If Earth's orbit is a circle, what is its speed, v_{0} ?
4. (5 pts) The constant $G M=1.333 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}$ using the values above. What is $G M$ in units of $A U^{3}$ years ${ }^{-2}$? The symbol AU stands for a unit of length where the radius of Earth's orbit is 1.0 (known as astronomical units). What is v_{0} in these units?
5. (5 pts) Write a program that calculates x, y, v_{x} and v_{y} as a function of t. Set the initial conditions as $x=R_{0}, y=0, v_{x}=0, v_{y}=v_{0}$, where R_{0} is the radius of Earth's orbit and v_{0} is the velocity of Earth's orbit. Use units of AU for distance and years for time.
6. (5 pts) Plot the trajectory, y vs. x in units of AU over a time period of 3 years.
7. (5 pts) Plot the trajectory again, but with v_{0} set to half the value of Earth's orbit velocity.
8. (5 pts) Plot the kinetic energy, potential energy and total energy as a function of time for the last problem. Divide all the energies by m, i.e. plot E / m. Use units of $\mathrm{AU}^{2} /$ years 2.

