\qquad
\qquad

Physics 321 Exercise 4-Monday, Oct. 1
Consider a periodic force, $F(t+\tau)=F(t)$, where the form is that of a square wave,

$$
F(t)=\left\{\begin{aligned}
-F_{0}, & -\tau / 2<t<0 \\
F_{0}, & 0<t<\tau / 2
\end{aligned}\right.
$$

$F(t)$ can be expressed in terms of its Fourier components,

$$
F(t)=\frac{f_{0}}{2}+\sum_{n>0} f_{n} \cos (n \omega t)+g_{n} \sin (n \omega t), \quad \omega \equiv 2 \pi / \tau
$$

Use the expressions

$$
\begin{aligned}
& f_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \cos (n \omega t), \\
& g_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \sin (n \omega t) .
\end{aligned}
$$

1. (5 pts) Which coefficients are zero?
2. (5 pts) Find the non-zero coefficients, f_{n} and g_{n}.
3. (5 pts) Plot your result for the sum, $F(t) / F_{0}$, as a function of t / τ. Make 3 plots, with the cutoff on the sum set at $n_{\max }=5,50,500$. Plot your result for $-2<t / \tau<2$.
4. (5 pts) Now consider the force acting on a mass m in a harmonic oscillator, with fundamental frequency f_{0} and damping rate β. The particular solution is:

$$
\begin{align*}
x_{p}(t) & =\frac{f_{0}}{2 k}+\sum_{n>0} \alpha_{n} \cos \left(n \omega t-\delta_{n}\right)+\beta_{n} \sin \left(n \omega t-\delta_{n}\right), \tag{1}\\
\alpha_{n} & =\frac{f_{n} / m}{\sqrt{\left((n \omega)^{2}-\omega_{0}^{2}\right)^{2}+4 \beta^{2} n^{2} \omega^{2}}}, \\
\beta_{n} & =\frac{g_{n} / m}{\sqrt{\left((n \omega)^{2}-\omega_{0}^{2}\right)^{2}+4 \beta^{2} n^{2} \omega^{2}}}, \\
\delta_{n} & =\tan ^{-1}\left(\frac{2 \beta n \omega}{\omega_{0}^{2}-n^{2} \omega^{2}}\right) .
\end{align*}
$$

For $F_{0}=50 \mathrm{~N}, \tau=0.5 \mathrm{~s}, \beta=1.5 \mathrm{~Hz}, f_{0}=0.75 \mathrm{~Hz}$ and $m=100 \mathrm{~g}$, plot $x_{p}(t)$ for $-20<t<20$ s.

Solutions:

1. All f_{n} are zero, and $g_{n}=0$ for even n
2. Doing the integral

$$
g_{n=\mathrm{odd}}=\frac{4 F_{0}}{n \tau}
$$

Plots for (3) and (4)
For $n_{\text {max }}=5$,

For $n_{\text {max }}=50$,

For $n_{\max }=500$,

