\qquad
\qquad

Physics 321 Exercise 3-Monday, Sep. 25
A particle of mass m is in a damped harmonic oscillator. The spring constant is $m \omega_{0}^{2}$, and the damping force is $-b v$ with $\beta=b / 2 m$. The equations of motion are,

$$
\ddot{x}=-\omega_{0}^{2} x-2 \beta \dot{x} .
$$

Now, add an additional transient driving force, $F(t)=F_{0} \Theta(t) \Theta(\tau-t)$. I.e.,

$$
F(t)=\left\{\begin{array}{cl}
0, & t<0 \\
F_{0}, & 0<t<\tau \\
0, & t>\tau
\end{array}\right.
$$

1. (5 pts) Write the new equations of motion.
2. (5 pts) Edit your program from last week to solve for $x(t)$. Let the initial conditions be $x(t=0)=0$ and $v(t=0)=0$. Set $\beta=0.75 \mathrm{~Hz}, \mathrm{~m}=100 \mathrm{~g}, f_{0}=0.5 \mathrm{~Hz}, \tau=3$ seconds, and $F_{0}=50 \mathrm{~N}$. Plot $x(t)$ for $0<t<10$ seconds.
3. (5 pta) Repeat the same calculation, but with two different forms for $F(t)$,

$$
\begin{aligned}
& F_{a}(t)=F_{0} \Theta(t) \Theta(\tau-t) \frac{t}{\tau} \\
& F_{b}(t)=F_{0} \Theta(t) \Theta(\tau-t)\left(1-\frac{t}{\tau}\right)
\end{aligned}
$$

On the same plot as before, plot $x_{a}(t), x_{b}(t)$ and $x_{a}(t)+x_{b}(t)$. (Four plots on same graph)

