\qquad
\qquad

Physics 321 Exercise 2-Monday, Sep. 18
A particle of mass m is in a damped harmonic oscillator. The spring constant is $m \omega_{0}^{2}$, and the damping force is $-b v$ with $\beta=b / 2 m$. Deriving the equations of motion,

$$
\begin{aligned}
m \ddot{x} & =-m \omega_{0}^{2} x-b \dot{x}, \\
\ddot{x} & =-\omega_{0}^{2} x-2 \beta \dot{x} .
\end{aligned}
$$

Assume time is discretized such that $t_{n}=n \Delta t$, and the x_{n}, v_{n} and a_{n} refer to the position, velocity and acceleration at time t_{n}. Beginning with

$$
\begin{aligned}
v_{n} & =\frac{x_{n+1}-x_{n-1}}{2 \Delta t} \\
a_{n} & =\frac{x_{n+1}-2 x_{n}+x_{n-1}}{(\Delta t)^{2}}
\end{aligned}
$$

and

$$
a_{n}=F\left(x_{n}\right) / m,
$$

1. (5 pts) Show that this becomes

$$
x_{n+1}=\frac{\left[2-\omega_{0}^{2}(\Delta t)^{2}\right] x_{n}-[1-\beta \Delta t] x_{n-1}}{1+\beta \Delta t}
$$

This can then be solved iteratively for all $n \geq 2$. But, to get started, one needs to know both both x_{0} and x_{1}. If the initial velocity, v_{0} is given, one can set $x_{1}=x_{0}+v_{0} \Delta t+a_{0} \Delta t^{2} / 2$.
2. (5 pts) A particle of mass, $m=100$ grams, moves in a harmonic oscillator where the fundamental frequency (no damping) is $f_{0}=0.5 \mathrm{~Hz}$. The damping rate is $\beta=b / 2 m=0.5 \mathrm{~Hz}$. The particle is initially at the origin with initial velocity $v_{0}=5.0 \mathrm{~m} / \mathrm{s}$.
Write a program that numerically solves for $x(t)$ for $0 \leq t \leq 10 \mathrm{~s}$. To get started, one needs x_{1}, which by the formula above becomes.

$$
x_{1}=v_{0} t-\frac{1}{2} \beta v_{0}(\Delta t)^{2} .
$$

Plot $x(t)$.
3. (5 pts) Repeat for $\beta=1.0,2.0$ and 4.0 Hz . (Note: the oscillator becomes critically damped when $\beta>\omega_{0}$)

