your names_

Physics 321 Exercise: Differential Scattering October 30, 2023

1. A neutron is incident on a target where it experiences a potential energy:

$$V(r) = \begin{cases} V_0, & r < R \\ 0, & r > R \end{cases}$$

- (a) (5 pts) If $V_0 = +\infty$, what is the total cross section?
- (b) (3 pts) If V_0 is positive, but finite, the cross section is
 - bigger.
 - smaller.
 - the same.
- (c) (2 pts) If V_0 is negative, but finite, the cross section is
 - bigger.
 - smaller.
 - the same.
- 2. You are an experimentalist and you have measured counts in your detector. The beam was neutrons scattering off a lead target. The mass density of lead is 11.29 gm/cm³ and the mass of a lead atom is 3.44×10^{-22} g. The thickness of the target is 0.5 microns. You have 90 detector elements set at scattering angles of $2,4,6,\cdots,180$ degrees. Each detector's cross sectional area is a 1 cm by 1 cm square, and is positioned 0.75 m from the target. A beam is aimed at the target, with 5×10^{12} neutrons impinging the target over the course of the experiment. Your detector elements have perfect efficiency and record the number of counts in the table below.
 - (a) (5 pts) What is the angular coverage, $d\Omega$, of each detector element?
 - (b) (5 pts) Calculate and plot $d\sigma/d\Omega$ in barns as a function of θ . (1 barn = 10^{-24} cm²).

θ_s (deg)	counts		1004
2.0	442730	92.0	1864
4.0	438673	94.0	2187
6.0	431988	96.0	2476
8.0	422786	98.0	2724
10.0	411222	100.0	2927
12.0	397483	102.0	3084
14.0	381791	104.0	3196
16.0	364394	106.0	3266
18.0	345558	108.0	3296
20.0	325566	110.0	3290
22.0	304704	112.0	3253
24.0	283262	114.0	3189
26.0	261520	110.0	3102
28.0	239752	118.0	2997
30.0	218211	120.0	2877
32.0	197130	122.0	2747
34.0	176719	124.0	2610
36.0	157159	126.0	2469
38.0	138604	128.0	2326
40.0	121176	130.0	2184
42.0	104968	132.0	2044
44.0	90045	134.0	1908
46.0	76441	130.0	1778
48.0	64168	138.0	1653
50.0	53212	140.0	1535
52.0	43540	142.0	1424
54.0	35099	144.0	1321
56.0	27825	140.0	1225
58.0	21639	148.0	1137
60.0	16457	150.0	1050
62.0	12187	152.0	982
64.0	8736	154.0	915
66.0	6010	150.0	854
68.0	3916	158.0	800
70.0	2366	160.0	752
72.0	1275	162.0	710
74.0	565	164.0	673
76.0	164	166.0	641 614
78.0	8	168.0	614 501
80.0	40	170.0	591
82.0	209	172.0	573
84.0	474	174.0	559
86.0	799	176.0	550
88.0	1153	178.0	544 542
90.0	1514	180.0	542