\qquad

Physics 321 Exercise: Differential Scattering October 30, 2023

1. A neutron is incident on a target where it experiences a potential energy:

$$
V(r)=\left\{\begin{array}{rr}
V_{0}, & r<R \\
0, & r>R
\end{array}\right.
$$

(a) (5 pts) If $V_{0}=+\infty$, what is the total cross section?
(b) (3 pts) If V_{0} is positive, but finite, the cross section is

- bigger.
- smaller.
- the same.
(c) $(2 \mathrm{pts})$ If V_{0} is negative, but finite, the cross section is
- bigger.
- smaller.
- the same.

2. You are an experimentalist and you have measured counts in your detector. The beam was neutrons scattering off a lead target. The mass density of lead is $11.29 \mathrm{gm} / \mathrm{cm}^{3}$ and the mass of a lead atom is $3.44 \times 10^{-22} \mathrm{~g}$. The thickness of the target is 0.5 microns. You have 90 detector elements set at scattering angles of $2,4,6, \cdots, 180$ degrees. Each detector's cross sectional area is a 1 cm by 1 cm square, and is positioned 0.75 m from the target. A beam is aimed at the target, with 5×10^{12} neutrons impinging the target over the course of the experiment. Your detector elements have perfect efficiency and record the number of counts in the table below.
(a) (5 pts) What is the angular coverage, $d \Omega$, of each detector element?
(b) (5 pts) Calculate and plot $d \sigma / d \Omega$ in barns as a function of θ. (1 barn $\left.=10^{-24} \mathrm{~cm}^{2}\right)$.

$\theta_{s}(\mathrm{deg})$	counts		
2.0	442730		
4.0	438673	92.0	1864
6.0	431988	94.0	2187
8.0	422786	96.0	2476
10.0	411222	98.0	2724
12.0	397483	100.0	2927
14.0	381791	102.0	3084
16.0	364394	104.0	3196
18.0	345558	106.0	3266
20.0	325566	108.0	3296
22.0	304704	110.0	3290
24.0	283262	112.0	3253
26.0	261520	114.0	3189
28.0	239752	116.0	3102
30.0	218211	118.0	2997
32.0	197130	120.0	2877
34.0	176719	122.0	2747
36.0	157159	124.0	2610
38.0	138604	126.0	2469
40.0	121176	128.0	2326
42.0	104968	130.0	2184
44.0	90045	132.0	2044
46.0	76441	134.0	1908
48.0	64168	136.0	1778
50.0	53212	138.0	1653
52.0	43540	140.0	1535
54.0	35099	142.0	1424
56.0	27825	144.0	1321
58.0	21639	146.0	1225
60.0	16457	148.0	1137
62.0	12187	150.0	1056
64.0	8736	152.0	982
66.0	6010	154.0	915
68.0	3916	156.0	854
70.0	2366	158.0	800
72.0	1275	160.0	752
74.0	565	162.0	710
76.0	164	164.0	673
78.0	8	166.0	641
80.0	40	168.0	614
82.0	209	170.0	591
84.0	474	172.0	573
86.0	799	174.0	559
88.0	1153	176.0	550
90.0	1514	178.0	544
180.0	542		

