\qquad

Exercise, Monday, Nov. 13,15, 2023
Here, we will define a function $L(x, \dot{x})$ in terms of the potential and kinetic energy of two particles,

$$
\begin{aligned}
\mathcal{L} & \equiv T-V, \\
T & =\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}, \\
V & =V\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Consider the following integral

$$
S=\int d t \mathcal{L}\left(\dot{x}_{1}, \dot{x}_{2}, x_{1}, x_{2}, t\right),
$$

where \dot{x}_{i} and x_{i} are functions of the time t.
If I minimize or maximize S (known as the action), the Euler-Lagrange equations are

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{1}}=\frac{\partial L}{\partial x_{1}}, \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{2}}=\frac{\partial L}{\partial x_{2}},
\end{aligned}
$$

For the problem below assume the two particles have the same mass, $m_{1}=m_{2}=m$, and that the potential is that of a single spring connecting the two masses.

$$
V\left(x_{1}, x_{2}\right)=\frac{1}{2} k\left(x_{1}-x_{2}\right)^{2} .
$$

1. (5 pts) Using the Euler-Lagrange equations, find the equations of motion for both x_{1} and x_{2}.
2. (5 pts) Write an equation of motion involving only $r \equiv x_{1}-x_{2}$. (taking difference above equations)
3. (5 pts) Write an equation of motion involving only $R \equiv\left(x_{1}+x_{2}\right) / 2$. (summing two equations above)
4. (10 pts) Repeat (a-c), but assume the particles have different mass, and replace R with the center-of-mass coordinate, $R=\left(m_{1} x_{1}+m_{2} x_{2}\right) /\left(m_{1}+m_{2}\right)$. First, note that KE can be written as

$$
T=\frac{1}{2} M \dot{R}^{2}+\frac{1}{2} \mu \dot{r}^{2}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$. The potential energy is

$$
V=\frac{k}{2} r^{2} .
$$

Your goal is to write equations of motion for both R and r.
5. (5 pts) Show that the equations of motion from (4) reproduce those for (2) and (3) when the masses become equal.

