your name \qquad
Physics 321 Practice Exam \#2 - Wednesday, Nov. 19
FYI: For the differential equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0
$$

the solutions are

$$
\begin{aligned}
& x=A_{1} e^{-\beta t} \cos \omega^{\prime} t+A_{2} e^{-\beta t} \sin \omega^{\prime} t \omega^{\prime}=\sqrt{\omega_{0}^{2}-\beta^{2}} \quad \text { (under damped) } \\
& x=A e^{-\beta t}+B t e^{-\beta t}, \quad \text { (critically damped) } \\
& x=A_{1} e^{-\beta_{1} t}+A_{2} e^{-\beta_{2} t}, \quad \beta_{i}=\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}, \quad \text { (over damped). }
\end{aligned}
$$

Coriolis and centrifugal forces

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}_{\text {real }}-m \vec{\omega} \times \vec{\omega} \times \vec{r}-2 m \vec{\omega} \times \vec{v}
$$

1. A small particle of mass m is aimed at a heavy target. They are attracted by a potential,

$$
V(r)=-\frac{\alpha}{r^{4}}
$$

Find the cross sectional area for impacting the origin if the incoming energy of the particle is E.
2. A particle is in a circular orbit with angular velocity $\dot{\theta}$ due to a potential

$$
V(r)=V_{0} \ln (r / a) .
$$

If the radius is given a small perturbation, what is the frequency ω with which the particle's radius oscillates about the original value?
3. A particle is fired directly upward from a point on the equator with muzzle velocity $v_{0}=500$ m / s. Neglecting air resistance, Where does the particle land relative to the firing point. Take into account the Coriolis force.
4. Additionally, one problem on the midterm will be a reprise from a previous quiz or midterm.

