\qquad

FYI: For the differential equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0,
$$

the solutions are

$$
\begin{aligned}
& x=A_{1} e^{-\beta t} \cos \omega^{\prime} t+A_{2} e^{-\beta t} \sin \omega^{\prime} t \omega^{\prime}=\sqrt{\omega_{0}^{2}-\beta^{2}} \quad \text { (under damped) } \\
& x=A e^{-\beta t}+B t e^{-\beta t}, \quad \text { (critically damped) } \\
& x=A_{1} e^{-\beta_{1} t}+A_{2} e^{-\beta_{2} t}, \quad \beta_{i}=\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}, \quad \text { (over damped). }
\end{aligned}
$$

1. A particle of mass m moves in a potential $V(x)=\beta x$. The particle is initially at $x=0$ with a kinetic energy T_{0} moving to the right.
(a) (1 pt) What is the maximum distance the particle travels before turning around?
(b) (3 pts) Solve for the position as a function of time. Only worry about the times before the particle turns around.
(c) $(1 \mathrm{pt})$ How much time is required for the particle to turn around?

Solution:

a)

$$
\begin{aligned}
\beta x_{\max } & =T_{0} \\
x_{\max } & =T_{0} / \beta
\end{aligned}
$$

b)

$$
\begin{aligned}
t(x) & =\int_{0}^{x} \frac{d x^{\prime}}{\sqrt{2\left(T_{0}-\beta x^{\prime}\right) / m}} \\
& =\sqrt{\frac{m}{2 \beta}} \int_{0}^{x} \frac{d x^{\prime}}{\sqrt{\left(T_{0} / \beta\right)-x^{\prime}}} \\
& =-\left.\sqrt{\frac{2 m}{\beta}} \sqrt{x_{\max }-x^{\prime}}\right|_{0} ^{x} \\
& =\sqrt{\frac{2 m x_{\max }}{\beta}}-\sqrt{\frac{2 m\left(x_{\max }-x\right)}{\beta}} \\
x & =x_{\max }-\frac{\beta}{2 m}\left(\sqrt{\frac{2 m x_{\max }}{\beta}}-t\right)^{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
t\left(x_{\max }\right) & =\sqrt{\frac{m}{2 \beta}} \int_{0}^{x_{\max }} \frac{d x}{\sqrt{x_{\max }-x}} \\
& =\sqrt{\frac{2 m x_{\max }}{\beta}}=\sqrt{\frac{2 m T_{0}}{\beta^{2}}}
\end{aligned}
$$

\qquad
2. (5 pts) A rocket is in deep space, out of the realm of gravitational fields, when it fires its engines and sends its exhaust backward at a speed of v_{e} relative to the rocket. The rocket has two stages of equal mass M filled with fuel, plus a payload of mass P. Both stages have a fraction f of their mass remaining after they have expelled all their fuel. Find the final speed of the payload after both stages have expended their fuel.

Solution:

For a single stage the final velocity is found by

$$
\begin{aligned}
M(t) \frac{d v}{d t} & =v_{e} \frac{d M}{d t}, \\
v_{f} & =v_{e} \ln \left(\frac{M_{f}}{M_{0}}\right) .
\end{aligned}
$$

For the two stages

$$
\begin{equation*}
v=v_{e} \ln \left(\frac{P+M+f M}{2 M+P}\right)+v_{e} \ln \left(\frac{P+f M}{P+M}\right) \tag{1}
\end{equation*}
$$

\qquad
3. Consider an underdamped one-dimensional harmonic oscillator of a particle of mass m where the spring constant is k and the drag force is $-b v$.
(a) (2 pts) Write the general solution in terms of two arbitrary constants.
(b) (3 pts) Now, add an external force, $F_{\text {ext }}(t)=m g e^{-\lambda t} \Theta(t)$. Find a particular solution for $t>0$ that behaves as $\sim e^{-\lambda t} .(\Theta(t)=1$ for $t>0,=0$ otherwise)
(c) (3 pts) If at $t=0$ the particle is at position x_{0} with zero velocity, find the exact solution $x(t)$ for $t>0$.
(d) (2pts) Consider the limit where the force is very strong, but is applied for a short time. $F_{0} \rightarrow \infty, \lambda \rightarrow \infty$ and $F_{0} / \lambda=I_{0}$. Assuming the particle is at rest at the origin, find $x(t)$ for $t>0$. Given answer in terms of β, ω_{0} and the initial impulse I_{0}.

Solution:

a)

$$
\begin{aligned}
x & =\Re A e^{i \omega t} \\
-m A \omega^{2} & =-i b \omega A-k A \\
\omega & =i \beta+\sqrt{\beta^{2}+4 \omega_{0}^{2}}, \quad \beta \equiv b / 2 m, \omega_{0} \equiv \sqrt{k / m} \\
x & =A e^{-\beta t} \cos (\omega t)+B e^{-\beta t} \sin (\omega t), \quad \omega \equiv \sqrt{\beta^{2}+\omega_{0}^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
x_{p} & =A e^{-\lambda t} \\
\left(\lambda^{2} A-2 \beta \lambda A+\omega_{0}^{2} A\right) e^{-\lambda t} & =g e^{-\lambda t} \\
A & =\frac{g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} .
\end{aligned}
$$

c)

$$
\begin{aligned}
x & =A \cos (\omega t) e^{-\beta t}+B \sin (\omega t) e^{-\beta t}+\frac{g e^{-\lambda t}}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \\
x_{0} & =A+\frac{g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \\
0 & =-\beta A+\omega B-\frac{\lambda g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}}, \\
A & =x_{0}-\frac{g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \\
B & =\frac{\beta}{\omega} A+\frac{\lambda g / \omega}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \\
& =\frac{\beta x_{0}}{\omega}+\frac{g}{\omega} \frac{\beta+\lambda}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}}
\end{aligned}
$$

d) The initial impulse is the same as the initial momentum, so $I_{0}=F_{0} / \lambda$ and $v_{0}=I_{0} / \mathrm{m}$.

$$
\begin{align*}
0 & =A+\frac{g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \tag{2}\\
I_{0} / m & =-\beta A+\omega B-\frac{\lambda g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}} \tag{3}
\end{align*}
$$

$$
\begin{align*}
A & =-\frac{g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}}, \tag{4}\\
B & =\frac{1}{\omega}\left\{\frac{I_{0}}{m}+\beta A+\frac{\lambda g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}}\right\} \tag{5}\\
& =\frac{1}{\omega}\left\{\frac{I_{0}}{m}+\frac{(\lambda-\beta) g}{\lambda^{2}-2 \beta \lambda+\omega_{0}^{2}}\right\} . \tag{6}
\end{align*}
$$

