your name_

Physics 321 FINAL - Thursday, Dec. 17 2015

FYI: For the differential equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0,$$

the solutions are

$$\begin{aligned} x &= A_1 e^{-\beta t} \cos \omega' t + A_2 e^{-\beta t} \sin \omega' t \quad \omega' = \sqrt{\omega_0^2 - \beta^2} \quad \text{(under damped)} \\ x &= A e^{-\beta t} + B t e^{-\beta t}, \quad \text{(critically damped)} \\ x &= A_1 e^{-\beta_1 t} + A_2 e^{-\beta_2 t}, \quad \beta_i = \beta \pm \sqrt{\beta^2 - \omega_0^2}, \quad \text{(over damped)}. \end{aligned}$$

Coriolis and centrifugal forces

$$m\frac{d^2\vec{r}}{dt^2} = \vec{F}_{\rm real} - m\vec{\omega} \times \vec{\omega} \times \vec{r} - 2\vec{\omega} \times \vec{v}.$$

Lagrange's equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}.$$

Some integrals:

$$\int \frac{dx}{1-x^2} = \tanh^{-1}(x),$$
$$\int \frac{dx}{1+x^2} = \tan^{-1}(x),$$
$$\int \frac{dx}{\sqrt{x^2-1}} = \cosh^{-1}(x),$$
$$\int \frac{dx}{\sqrt{1+x^2}} = \sinh^{-1}(x),$$
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}(x),$$
$$\int_{-\infty}^{\infty} dx \, \delta(x) = 1.$$

your name_

- 1. A projectile of mass m feels a gravitational force mg, plus a drag force, γv^2 .
 - (a) (1pt) What is the terminal velocity, v_t , of a ball dropped from a large height?
 - (b) (3 pts) If the projectile is hurled UPWARD with initial speed v_0 , find the speed as a function of time on the way up.
 - (c) (1 pt) Regarding the upward trajectory above, how much time passes before the projectile reaches its maximum height?

Solution:

a)

$$\begin{array}{rcl} mg &=& \gamma v_t^2, \\ v_t &=& \sqrt{mg/\gamma}. \end{array}$$

b)

$$\begin{split} m \frac{dv}{dt} &= -\gamma v^2 - mg, \\ t &= -\int \frac{dv}{g + \gamma v^2/m}, \\ gt &= -\int \frac{dv}{1 + v^2/v_t^2}, \\ \frac{gt}{v_t} &= -\int_{v_0/v_t}^{v/v_t} \frac{dx}{1 + x^2} = -\tan^{-1}(v/v_t) + \tan^{-1}(v_0/v_t), \\ v &= v_t \tan\left(\tan^{-1}(v_0/v_t) - \frac{gt}{v_t}\right) \end{split}$$

c)

$$t_{\max} = \frac{v_t}{g} \tan^{-1} \left(\frac{v_0}{v_t} \right).$$

2. (5 pts) A particle of mass m moving in one dimension is confined by a spring with spring constant k, and also experiences a small dissipative force -bv. For negative times, the particle is at rest at the equilibrium position x = 0. The particle then feels a sudden impulse I, i.e. the force is of the form $F = I\delta(t)$. Find the position as a function of time.

Solution:

$$\begin{aligned} mv_0 &= I, \quad v_0 = I/m, \\ x &= Ae^{-\beta(t-t_0)}\cos\omega'(t-t_0) + Be^{-\beta(t-t_0)}\sin\omega'(t-t_0), \quad \beta \text{ and } \omega' \text{ defined above,} \\ 0 &= A, \\ I/m &= \omega'B, \\ x &= \frac{I}{m\omega'}e^{-\beta(t-t_0)}\sin\omega'(t-t_0). \end{aligned}$$

3. (5 pts) A particle feels an attractive central potential,

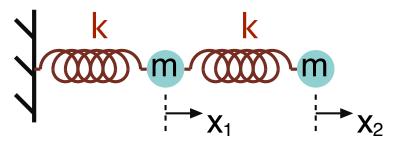
$$V(r) = \beta r.$$

The particle is in a stable circular orbit of angular frequency ω_0 , when it feels a small perturbation which causes the the radius r to oscillate about the original orbit's radius with frequency ω . Find ω in terms of ω_0 .

Solution:

$$\begin{split} V_{\rm eff} &= \beta r + \frac{L^2}{2mr^2}, \\ \frac{d^2 V_{\rm eff}}{dr^2} &= k_{\rm eff} = \frac{3L^2}{mr^4}, \\ \omega^2 &= \frac{3L^2}{m^2r^4}, \\ L &= mr^2\omega_0, \\ \omega &= \omega_0\sqrt{3}. \end{split}$$

your name_



- 4. Consider the two identical masses connected to the two identical springs pictured above. Let x_1 and x_2 describe the displacement of the two masses relative to their fixed equilibrium position.
 - (a) (3 pts) Write the Lagrangian in terms of x_1 and x_2 , then find the equations of motion.
 - (b) (3 pts) Assume there are solutions of the form,

$$x_1 = Ae^{i\omega t}, \quad x_2 = Be^{i\omega t}.$$

Find the frequencies of the two normal modes.

Solution:

a)

$$\mathcal{L} = \frac{m}{2}\dot{x}_1^2 + \frac{m}{2}\dot{x}_2^2 - \frac{k}{2}x_1^2 - \frac{k}{2}(x_1 - x_2)^2,$$

$$\ddot{x}_1 = -\omega_0^2 x_1 - \omega_0^2(x_1 - x_2) = -2\omega_0^2 x_1 + \omega_0^2 x_2,$$

$$\ddot{x}_2 = -\omega_0^2(x_2 - x_1)$$

b)

$$\begin{aligned} x_1 &= A e^{i\omega t}, \quad x_2 = B e^{i\omega t}, \\ -\omega^2 A &= -\omega_0^2 (2A - B), \\ -\omega^2 B &= -\omega_0^2 (B - A), \\ -\omega^2 A &= -\omega_0^2 \left(2A - \frac{\omega_0^2}{\omega_0^2 - \omega^2} A \right), \\ -\omega^2 &= -2\omega_0^2 + \frac{\omega_0^4}{\omega_0^2 - \omega^2}, \\ \omega^4 - 3\omega_0^2 \omega^2 + \omega_0^4 &= 0, \\ \omega &= \omega_0 \sqrt{\frac{3 \pm \sqrt{5}}{2}} \end{aligned}$$

5. Consider a particle of mass m confined to move along the surface of a cone defined by

$$z = \alpha \rho, \quad \rho = \sqrt{x^2 + y^2}, \quad \alpha = 1.$$

The particle moves without friction along the surface and feels the gravitational force which is directed in the negative z direction.

- (a) (2 pts) Write down the Lagrangian in terms of the two coordinates ρ and θ , where θ is the azimuthal angle about the z axis.
- (b) (2 pts) Of the following quantities, list all those that represent constants of the motion (conserved quantities for all trajectories): Energy E, components of the momentum p_x , p_y , p_z , magnitude of the momentum $p = \sqrt{p_x^2 + p_y^2 + p_z^2}$, components of the angular momentum L_x, L_y, L_z , magnitude of the angular momentum $L = \sqrt{L_x^2 + L_y^2 + L_z^2}$.

Solution:

a) Use the fact that $\dot{z} = \dot{\rho}$,

$$\mathcal{L} = \frac{1}{2}m\rho^2\dot{\theta}^2 + m\dot{\rho}^2 - mg\rho.$$
(1)

b) E and L_z .