\qquad
Physics 321 Midterm \#2 - Wednesday, Nov. 9, 2022
Some integrals:

$$
\begin{gathered}
\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x) \\
\int \frac{d x}{1-x^{2}}=\tanh ^{-1}(x) \\
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1}(x) \\
\int \frac{d x}{\sqrt{1+x^{2}}}=\sinh ^{-1}(x) \\
\int d x \tan (x+\phi)=-\ln (\cos (x+\phi)) \\
\int d x \tanh (x+a)=\ln (\cosh (x+a)) \\
F(t)=\frac{f_{0}}{2}+\sum_{n} f_{n} \cos (n \omega t)+g_{n} \sin (n \omega t) \\
f_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \cos (2 n \pi t / \tau) \\
g_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \sin (2 n \pi t / \tau)
\end{gathered}
$$

For the equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0,
$$

The solutions are:

$$
\begin{aligned}
x & =A e^{i \omega t}, \\
\omega & =i \beta \pm \sqrt{\omega_{0}^{2}-\beta^{2}}, \\
x(t) & =A e^{-\beta t} e^{ \pm i \sqrt{\omega_{0}^{2}-\beta^{2}} t}, \text { underdamped, } \\
& =A e^{-\beta t \pm \sqrt{\beta^{2}-\omega_{0}^{2}} t}, \text { overdamped. }
\end{aligned}
$$

your name \qquad

1. (15 pts) A mass m is connected to a spring with spring constant $k=m \omega_{0}^{2}$ and has a very small damping. The mass also feels a periodic force

$$
\begin{aligned}
F(t) & =F_{0} \sin (\omega t), \\
\omega & \neq \omega_{0} .
\end{aligned}
$$

Assuming the force has been applied for a very very long time, find the displacement $x(t)$ for $t>0$.

Extra Space for No. 1

Solution: After long a long time the homogeneous part of the solution fades away. You need only the particular part.

$$
\begin{aligned}
x & =A \cos \omega t+B \sin \omega t \\
\ddot{x}+\omega_{0}^{2} x & =\frac{F_{0}}{m} \sin \omega t \\
-\omega^{2}(A \cos \omega t+B \sin \omega t)+\omega_{0}^{2}(A \cos \omega t+B \sin \omega t) & =\left(F_{0} / m\right) \sin \omega t \\
B & =0 \\
A & =\frac{\left(F_{0} / m\right)}{\omega_{0}^{2}-\omega^{2}}
\end{aligned}
$$

your name \qquad
2. A mass m is connected to a spring with spring constant $k=m \omega_{0}^{2}$ and has an very small damping constant. It is subject to a periodic force,

$$
\begin{aligned}
F(t) & =\left\{\begin{array}{cc}
-F_{0}, & -\tau / 2<t<0, \\
F_{0}, & 0<t<\tau / 2
\end{array},\right. \\
F(t+\tau) & =F(t) .
\end{aligned}
$$

(a) (15 pts) Expressing the force as a series

$$
\begin{aligned}
F(t) & =\frac{f_{0}}{2}+\sum_{n} f_{n} \cos (n \omega t)+g_{n} \sin (n \omega t), \\
\omega & =2 \pi / \tau
\end{aligned}
$$

what are the coefficients f_{n} and g_{n} ? Note that $\omega \neq \omega_{0}$.
(b) (10 pts) Assuming the force has been active for a very very long time, express the displacement $x(t)$ in terms of the coefficients (as a sum).

Extra Space for No. 2

Solution: a)

$$
\begin{aligned}
f_{n} & =0 \text { integrating odd function gives zero } \\
g_{n} & =\frac{2}{\tau} 2 \int_{0}^{\tau / 2} d t \sin (n \omega t) F_{0} \\
& =\frac{4 F_{0}}{n \omega \tau}[1-\cos (n \omega \tau / 2)] \\
& =\frac{4 F_{0}}{n \omega \tau}[1-\cos (n \pi)] \\
& =\left\{\begin{array}{rl}
\frac{4 F_{0}}{\pi n} & n=1,3,5 \cdots \\
0 & n=2,4,6 \cdots
\end{array}\right.
\end{aligned}
$$

b) By inspecting \#1,

$$
x(t)=\sum_{n=1,3,5 \cdots} \frac{8 F_{0}}{2 \pi n m\left(\omega_{0}^{2}-n^{2} \omega^{2}\right)} \sin (n \omega t)
$$

\qquad
3. Consider a particle of mass m and energy E which experiences an attractive spherically symmetric potential,

$$
V(r)=-\frac{V_{0}}{r^{2}} .
$$

If the particle reaches $r=0$ it will annihilate.
(a) (5 pts) Sketch the effective (real plus centrifugal) potential for a particle with angular momentum L. Show potentials for a few values of L to demonstrate how $V_{\text {eff }}$ depends on L.
(b) (15 pts) Calculate the cross section for annihilation.
\qquad

Extra Space for No. 3

a)
b) Criteria for annihilation is

$$
\frac{L^{2}}{2 m}<V_{0}
$$

The impact parameter is related to L by

$$
\begin{equation*}
L=b p_{\text {far away }}=b \sqrt{2 m E} . \tag{1}
\end{equation*}
$$

The cross section for annihilation is

$$
\begin{aligned}
\sigma_{\text {ann. }} & =\pi b^{2}=\pi L^{2} / p_{\text {far away }}^{2} \\
& =\pi \frac{2 m V_{0}}{p_{\text {far away }}^{2}} \\
& =\pi \frac{V_{0}}{E} .
\end{aligned}
$$

\qquad
4. (20 pts, no points awarded if answer has wrong dimension) You are an experimentalist planning a scattering experiment using a gold target and a much lighter projectile. You go online and find the mass density of gold, ρ_{Au}, and the mass of a gold atom, m_{Au}. Somebody sends you a target, but they didn't tell you the dimensions of the thin foil. You measure the width and length, W and L, then measure the mass of the foil, M, but you can't measure the thickness. The accelerator provides a beam, with $N_{\text {beam }}$ particles incident on the foil over the duration of the experiment. One of your detectors is positioned at a scattering angle $\theta_{s}=45^{\circ}$. The detector has a cross-sectional area a and is placed a distance R from the center of the target. Over the six days you record $N_{\text {counts }}$ in the detector. What is $d \sigma / d \Omega$ for $\theta_{s}=45^{\circ}$?
\qquad

Extra Space for No. 4

Solution: Probability of scattering into detector element is

$$
\text { Prob }=\frac{N_{\text {target atoms }} d \sigma / d \Omega \delta \Omega}{A} .
$$

The number of target atoms per area is

$$
\frac{N_{\text {target atoms }}}{A}=\frac{M}{m W L} .
$$

So, the Probability is

$$
\text { Prob }=\frac{M}{m W L} \frac{d \sigma}{d \Omega} \Delta \Omega
$$

The angular coverage of the detector is

$$
\Delta \Omega=\frac{a}{R^{2}},
$$

and the probability is $N_{\text {counts }} / N_{\text {beam }}$. This gives

$$
\frac{d \sigma}{d \Omega}=\frac{N_{\text {counts }}}{N_{\text {beam }}} \frac{R^{2}}{a} \frac{m W L}{M} .
$$

