your name \qquad
Physics 321 Midterm \#2 - Friday, Nov. 20
FYI: For the differential equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0,
$$

the solutions are

$$
\begin{aligned}
& x=A_{1} e^{-\beta t} \cos \omega^{\prime} t+A_{2} e^{-\beta t} \sin \omega^{\prime} t \quad \omega^{\prime}=\sqrt{\omega_{0}^{2}-\beta^{2}} \quad \text { (under damped) } \\
& x=A e^{-\beta t}+B t e^{-\beta t}, \quad(\text { critically damped) } \\
& x=A_{1} e^{-\beta_{1} t}+A_{2} e^{-\beta_{2} t}, \quad \beta_{i}=\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}, \quad \text { (over damped). }
\end{aligned}
$$

Coriolis and centrifugal forces

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}_{\text {real }}-m \vec{\omega} \times \vec{\omega} \times \vec{r}-2 m \vec{\omega} \times \vec{v}
$$

1. A small asteroid of mass m is aimed at a heavy planet of mass M and radius R. If the asteroid's speed relative to the planet is v_{0} when the asteroid is far away,
(a) (2 pts) What is the speed with which an asteroid with impact parameter $b=0$ strikes the surface?
(b) (2 pts) Find the maximum angular momentum that would lead to a collision given v_{0} ?.
(c) (1 pt$)$ What is the maximum impact parameter, $b_{\max }$, that would lead to a collision?
(d) (1 pt) What is the cross section for collision?
(e) (1 pts) What is the maximum speed of an asteroid whose trajectory just misses colliding with the planet?

Solution: a)

$$
\begin{aligned}
E & =\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v^{2}-\frac{G M m}{r} \\
v_{\max }(b=0) & =\sqrt{v_{0}^{2}+2 \frac{G M}{R}} .
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{L^{2}}{2 m R^{2}}-\frac{G M m}{R} & =\frac{1}{2} m v_{0}^{2} \\
L & =m R \sqrt{\frac{2 G M}{R}+v_{0}^{2}}
\end{aligned}
$$

c)

$$
b=L /\left(m v_{0}\right)=R \sqrt{1+\frac{2 G M}{R v_{0}^{2}}} .
$$

d)

$$
\sigma=\pi b_{\max }^{2}=\pi R^{2}\left(1+\frac{2 G M}{R v_{0}^{2}}\right)
$$

e)

$$
v_{\max }\left(b_{\max }\right)=\frac{L}{m R}=\sqrt{\frac{2 G M}{R}+v_{0}^{2}}
$$

could also use energy conservation, same as (a).
\qquad
2. A ball of mass m is dropped from a height, h, above Minneapolis (latitude $=45^{\circ}$). It falls without air resistance.
(a) (4 pts) How far is the ball deflected by the Coriolis force? Give answer in terms of m, g, h and Earth's radius R and period T.
(b) (1 pt) In what direction is the deflection? (e.g. southwest)

Solutions:

a) Let \hat{x} point east, \hat{y} point north and \hat{z} point up.

$$
\begin{aligned}
F_{x} & =-2 m \omega_{y} v_{z}, \\
F_{y} & =2 m \omega_{x} v_{z}, \\
\omega_{y} & =\frac{2 \pi}{T \sqrt{2}}, \quad \omega_{x}=0, \\
F_{y} & =0, \quad F_{x}=-2 m \frac{2 \pi}{T \sqrt{2}} v_{z} . \\
v_{z} & =-g t, \\
a_{x} & =\frac{2 \pi g \sqrt{2}}{T} t, \\
v_{x} & =\frac{\pi g \sqrt{2}}{2 T} t^{2}, \\
x & =\frac{\pi g \sqrt{2}}{6 T} t^{3}, \\
\frac{1}{2} g t^{2} & =h, \\
t & =\sqrt{2 h / g} \\
x & =\frac{\pi g \sqrt{2}}{3 T} \frac{(2 h)^{3 / 2}}{2 g^{3 / 2}} \\
& =\frac{2 \pi h^{3 / 2}}{3 T g^{1 / 2}} .
\end{aligned}
$$

b) east
your name \qquad
3. A particle of mass m is in a circular orbit or radius R according to a potential

$$
V=V_{0} \ln (r / a)
$$

(a) (1 pt) What is the particle's speed while in a circular orbit? Give answer in terms of V_{0}, a, m and R.
(b) (1 pt) What is the particle's angular momentum, L, in the circular orbit? Give answer in terms of V_{0}, a, m and R.
(c) (2 pts) For a particle with this angular momentum, what is the effective radial potential? Provide a sketch. Label the radius of a circular orbit.
(d) (3 pts) What is the angular frequency of small oscillations of the radial distance r about a circular orbit? Give answer in terms of V_{0}, a, m and R.

Solutions: a)

$$
\begin{aligned}
F & =-\frac{V_{0}}{r} \\
& =-m \frac{v^{2}}{r} \\
v & =\sqrt{V_{0} / m}
\end{aligned}
$$

b)

$$
L=m v R=R \sqrt{m V_{0}}
$$

c)

$$
\begin{aligned}
V_{\mathrm{eff}} & =\frac{L^{2}}{2 m r^{2}}+V_{0} \ln (r / a), \\
0 & =\frac{d V}{d r}=-\frac{L^{2}}{m r^{3}}+\frac{V_{0}}{r}, \\
L^{2} & =m V_{0} R^{2}, \\
k_{\mathrm{eff}} & =\frac{d^{2} V}{d r^{2}}=\frac{3 L^{2}}{m R^{4}}-\frac{V_{0}}{R^{2}}, \\
& =\frac{3 V_{0} R^{2}}{R^{4}}-\frac{V_{0}}{R^{2}} \\
& =\frac{2 V_{0}}{R^{2}}, \\
\omega & =\sqrt{k_{\mathrm{eff}} / m}=\frac{\sqrt{2 V_{0} / m}}{R} .
\end{aligned}
$$

your name \qquad
4. A particle of mass m moves according to the potential

$$
V(x)=\alpha x, \quad \alpha>0
$$

A particle is sent in from the left (from $x<0$), from position $-a$ with total energy $E>0$ (potential plus kinetic).
(a) (1 pt) Sketch the potential, $V(x)$. Mark the energy E on the potential axis, and label the point at which the particle turns around.
(b) (1 pts) If the particle's initial velocity is toward the origin, what is the maximum position, $x_{\text {max }}$, of its trajectory?
(c) (3 pts) How much time is required to move to that maximum position?

Solution:

a) Hopefully you can sketch this
b) E / α.
c)

$$
\begin{aligned}
t & =\int_{-a}^{x} \frac{d x^{\prime}}{v} \\
& =\int_{-a}^{x} \frac{d x^{\prime}}{\sqrt{2(E-\alpha x) / m}} \\
& =\sqrt{\frac{m}{2 \alpha}} \int_{-a}^{x} \frac{d x^{\prime}}{\sqrt{(E / \alpha)-x}} \\
& =-\left.\sqrt{\frac{2 m}{\alpha}} \sqrt{(E / \alpha)-x^{\prime}}\right|_{-a} ^{x} \\
& =\sqrt{\frac{2 m}{\alpha}}(\sqrt{(E / \alpha)+a}-\sqrt{(E / \alpha)-x}) \\
& =\sqrt{\left(2 m E / \alpha^{2}\right)+2 m a / \alpha}
\end{aligned}
$$

