your name \qquad
Physics 321 Practice Midterm \#2 - Monday, Nov.7, 2022
Some integrals:

$$
\begin{gathered}
\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x) \\
\int \frac{d x}{1-x^{2}}=\tanh ^{-1}(x) \\
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1}(x) \\
\int \frac{d x}{\sqrt{1+x^{2}}}=\sinh ^{-1}(x), \\
\int d x \tan (x+\phi)=-\ln (\cos (x+\phi)) \\
\int d x \tanh (x+a)=\ln (\cosh (x+a)) \\
F(t)=\frac{f_{0}}{2}+\sum_{n} f_{n} \cos (n \omega t)+g_{n} \sin (n \omega t), \\
f_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \cos (2 n \pi t / \tau) \\
g_{n}=\frac{2}{\tau} \int_{-\tau / 2}^{\tau / 2} d t F(t) \sin (2 n \pi t / \tau)
\end{gathered}
$$

For the equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0,
$$

The solutions are:

$$
\begin{aligned}
x & =A e^{i \omega t}, \\
\omega & =i \beta \pm \sqrt{\omega_{0}^{2}-\beta^{2}}, \\
x(t) & =A e^{-\beta t} e^{ \pm i \sqrt{\omega_{0}^{2}-\beta^{2}} t}, \text { underdamped, } \\
& =A e^{-\beta t \pm \sqrt{\beta^{2}-\omega_{0}^{2} t}}, \text { overdamped. }
\end{aligned}
$$

\qquad

1. A particle of mass m is attached to a harmonic oscillator of of spring constant $k=m \omega_{0}^{2}$ with a vanishingly small damping. After being at rest for a long time, the particle experiences an impulse delivered over a very small time, with a force depening on time t as

$$
F(t)=P_{0} \delta(t)
$$

(a) (10 pts) Find the displacement $x(t)$.
(b) (10 pts) Repeat (a) but assume the impulse is not instantaneous, and instead has the form,

$$
F(t)=\left\{\begin{array}{cc}
\frac{P_{0}}{\tau}, & -\tau<t<\tau \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the displacement $x(t)$ for $t>\tau$.

Extra Space for No. 1

Solution: Particle has initial position $x=0$ and initial momentum P_{0} due to impulse. Solution is of form

$$
\begin{equation*}
x(t)=A \cos \omega_{0} t+B \sin \omega_{0} t \tag{1}
\end{equation*}
$$

$A=0$ to make $x(t=0)=0$ and

$$
\begin{equation*}
v(t)=B \omega_{0} \cos \left(\omega_{0} t\right) \tag{2}
\end{equation*}
$$

so $B=P_{0} /\left(m \omega_{0}\right)$,

$$
x=\frac{P_{0}}{m \omega_{0}} \sin \left(\omega_{0} t\right)
$$

your name \qquad
2. A particle of mass m experiences the potential

$$
V(r)=k r,
$$

where k is a positive constant.
(a) (10 pts) What is the angular frequency, ω_{0} of a circular orbit of radius r_{0} ?
(b) (10 pts) If the particle is given a small radial perturbation, what is the angular frequency, ω, with which the radius oscillates about r_{0} ? Give your answer in terms of ω_{0}.
\qquad

Extra Space for No. 2

Solution: From No. 1, you can see that for impulse $F\left(t^{\prime}\right) d t^{\prime}$, the contribution to the displacement is

$$
\begin{equation*}
\frac{F(t) d t}{m \omega_{0}} \sin \left(\omega_{0}\left(t-t^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

Summing over all the contributions (principle of superposition,

$$
\begin{align*}
x(t) & =\int_{-\tau}^{\tau} d t^{\prime} \frac{P_{0}}{m \omega_{0} \tau} \sin \left(\omega_{0}\left(t-t^{\prime}\right)\right) \tag{5}\\
& =\frac{P_{0}}{m \omega_{0} \tau} \int_{-\tau}^{\tau} d t^{\prime}\left[\sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t^{\prime}\right)-\cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t^{\prime}\right)\right] \tag{6}\\
& =\frac{P_{0}}{m \omega_{0} \tau} \int_{-\tau}^{\tau} d t^{\prime} \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t^{\prime}\right) \tag{7}\\
& =\frac{P_{0}}{m \omega_{0} \tau} \int_{-\tau}^{\tau} d t^{\prime} \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t^{\prime}\right) \tag{8}\\
& =\sin \left(\omega_{0} t\right) \frac{2 P_{0}}{m \omega_{0}^{2} \tau} \sin \left(\omega_{0} \tau\right) \tag{9}
\end{align*}
$$

\qquad
3. A particle of mass m and energy E scatters off a repulsive potential

$$
V=\frac{V_{0}}{r}
$$

where $V_{0}>0$. If the particle reaches a position R it will be absorbed by the target.
(a) (5 pts) Sketch the effective potential (real plus centrifugal) for a particle with angular momentum L. Plot for a few different values of L to show how it depends on L.
(b)
(c) (5 pts) What is the angular momentum of a trajectory that barely grazes the target?
(d) (5 pts$)$ What is the cross section for absorption?
(e) (5 pts) What is the minimum value of E for which there is absorption?
\qquad

Extra Space for No. 3

Solution:

a)

b) For such a trajectory, momentum is transverse at R,

$$
\begin{equation*}
L=R p(r=R)=R \sqrt{2 m\left(E-V_{0} / r\right)} . \tag{10}
\end{equation*}
$$

c)

$$
\begin{align*}
b p(r=\infty) & =L \tag{11}\\
b \sqrt{2 m E} & =R \sqrt{2 m\left(E-V_{0} / r\right)}, \tag{12}\\
b & =R \sqrt{\frac{E-V_{0} / r}{E}}, \tag{13}\\
\sigma & =\pi b^{2}=\pi R^{2} \frac{E-V_{0} / r}{E} . \tag{14}
\end{align*}
$$

d) This is when $b=0$ and

$$
\begin{equation*}
E=\frac{V_{0}}{r} . \tag{15}
\end{equation*}
$$

