\qquad
Physics 321 Exam \#1 - Friday, Oct. 12, 2018
FYI:
Some integrals:

$$
\begin{aligned}
\int_{0}^{x} \frac{d y}{\sqrt{1-y^{2}}} & =\sin ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{\sqrt{1+y^{2}}} & =\sinh ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{1+y^{2}} & =\tan ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{1-y^{2}} & =\tanh ^{-1}(x)
\end{aligned}
$$

For the differential equation

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0
$$

the solutions are

$$
\begin{aligned}
& x=A_{1} e^{-\beta t} \cos \omega^{\prime} t+A_{2} e^{-\beta t} \sin \omega^{\prime} t \quad \omega^{\prime}=\sqrt{\omega_{0}^{2}-\beta^{2}} \quad \text { (under damped) } \\
& x=A e^{-\beta t}+B t e^{-\beta t}, \quad(\text { critically damped) } \\
& x=A_{1} e^{-\beta_{1} t}+A_{2} e^{-\beta_{2} t}, \quad \beta_{i}=\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}, \quad \text { (over damped). }
\end{aligned}
$$

your name

1. A particle of mass m is in a harmonic oscillator of fundamental frequency $\sqrt{k / m}=\omega_{0}$, and feels a damping force $-2 m \beta v$. Additionally, there is an external force,

$$
F(t)=F_{0} \delta(t)
$$

where $\delta(t)$ is a delta function. The particle is initially $(t<0)$ at rest and at the origin.
(a) (10 pts) If the motion is critically damped, find $x(t)$
(b) (15 pts) At what times does the particle cross the origin if the motion is:

- under-damped
- critically damped
- over-damped

Do not count the initial position of $x=0$ as one of the crossings.
(a) $x(t)=A e^{-\beta t}+B t e^{-\beta t}$

$$
\begin{aligned}
& x(0)=0 \\
& \dot{x}(0)=F_{0} / m
\end{aligned}
$$

$$
A=0
$$

$$
\begin{gathered}
\left(F_{0} / m\right)=B \\
x=\frac{F_{0}}{m} t e^{-\beta t}
\end{gathered}
$$

under damped $x=B \sin w^{\prime} t e^{z}$

$$
w^{\prime} t=n \pi, \quad t=n \pi / \sqrt{\omega_{0}^{2}-\beta^{2}}
$$

(c)

$$
\begin{aligned}
& \text { critically damped } \\
& x=0 \text { at } t=\infty \text {, so never } \\
& x=A e^{-\beta_{1} t+B e^{-\beta_{2} t}} \\
& \left(F_{0} / m\right)=-\beta_{1} A-\beta_{2} B \\
& 0=A+B \\
& A=\frac{\left(F_{0} / m\right)}{\beta_{2}-\beta_{1}} \quad B=\frac{F_{2} / m}{\left(\beta_{1}-\beta_{2}\right)}=-A
\end{aligned}
$$

$$
\begin{aligned}
x= & A e^{-\beta_{1} t}-A e^{-\beta_{2} t} \\
& \operatorname{Let} \beta_{2}>\beta_{1} \text { then } A>0
\end{aligned}
$$

so x is aluag, >0
never cosser.
2. A particle of mass m is in a harmonic oscillator of fundamental frequency $\sqrt{k / m}=\omega_{0}$, and feels a damping force, $-2 m \beta v$. Additionally, there is an external periodic force,

$$
\begin{aligned}
F(t) & =m G(t), \\
G(t) & =\left\{\begin{array}{rr}
-G_{0}, & -\tau / 2<t<-\tau / 4 \\
+G_{0}, & -\tau / 4<t<\tau<4 \\
-G_{0}, & \tau / 4<t<\tau / 2 .
\end{array}\right. \\
G(t+\tau) & =G(t) .
\end{aligned}
$$

(a) (10 pts) For the expansion,

$$
\begin{aligned}
G(t) & =\frac{f_{0}}{2}+\sum_{n>0} f_{n} \cos (n \omega t)+g_{n} \sin (n \omega t) \\
\omega & \equiv \frac{2 \pi}{\tau}
\end{aligned}
$$

For what values of n are f_{n} zero? - and for what values are g_{n} zero?
(b) (15 pts) Find all the non-zero coefficients.

$$
\begin{aligned}
& \text { a) } g_{n}=0 \text { for all } n \\
& \begin{array}{l}
f_{n}=0 \text { when } m \pi=\omega_{n} \tau / 4=\frac{2 \pi}{2} n \frac{\tau}{4}=\frac{\pi n}{2} \\
\text { where } m=\text { some integer }
\end{array} \\
& \text { b) } f_{n}=\frac{2}{c} \int_{-\tau / 2}^{\pi / 2} G, \frac{n}{\cos 2 \pi r t / \tau}, n=1,3,5,7 \\
& \begin{array}{l}
=\frac{8 G_{0}}{\tau} \int_{0}^{-\pi / 2} d t \cos \frac{2 \pi n t}{\tau} \\
\quad=\frac{4 G}{\pi n} \sin \left(\frac{n \pi}{2}\right)=\frac{(n+1) / 2}{\pi n}(-1)^{\frac{n}{2}}, n=1,3,5,7
\end{array}
\end{aligned}
$$

