your name
Physics 321 Exam \#1 - Wednesday, Oct. 10, 2018
FYI:
Some integrals:

$$
\begin{aligned}
\int_{0}^{x} \frac{d y}{\sqrt{1-y^{2}}} & =\sin ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{\sqrt{1+y^{2}}} & =\sinh ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{1+y^{2}} & =\tan ^{-1}(x) \\
\int_{0}^{x} \frac{d y}{1-y^{2}} & =\tanh ^{-1}(x) \\
\int_{0}^{\alpha} d \theta \tan \theta & =-\ln (\cos \alpha)
\end{aligned}
$$

your name

1. A projectile of mass m feels a drag force,

$$
\left|F_{d}\right|=A v^{2}
$$

(a) (5 pts) If it is dropped, with zero initial velocity, from a large height, what is its maximum (critical) speed v_{c} ? Give your answer in terms of A, m and the acceleration of gravity g.
(b) (10 pts) If it is fired upward, with an initial velocity v_{0}, what is the time that passes before it reaches its maximum height?
(c) (10 pts$)$ Solve for the speed as a function of time.
(d) (15 pts, extra credit, all or nothing) What is the maximum height attained by the projectile? Show that your answer gives the correct answer in the limits that the initial velocity is zero, and in the limit that $A=0$.

$$
\text { (a) } \begin{aligned}
& m g=A v_{c}^{2}, v_{c}=\sqrt{m g / A} \\
& \text { (b) } \quad \begin{aligned}
d v & =-g-\frac{A}{m} v^{2} \\
t & =-\int_{v_{0}}^{0} \frac{d v}{g+\frac{A}{m} v^{2}}=\frac{1}{g} \int_{0}^{v_{0}} \frac{d v}{1+\frac{v^{2}}{v_{c}{ }^{2}}} \\
& =\frac{v_{c}}{g} \tan ^{-1}\left(v_{0} / v_{c}\right) \\
\text { (c) } t & =\frac{1}{g} \int_{v}^{v_{0}} \frac{d v^{1}}{1+v^{2} / v_{c}^{2}}+-1 v / v
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
v_{c} \tan \left(-\frac{g t}{v_{c}}+\tan ^{-1}\left(v_{0} / c\right)\right)=v \\
h=\int v d t=v_{c} \int d t \tan \left(\varphi-\frac{g t}{v_{c}}\right) \\
=\left.\frac{v_{c}^{2}}{g} \ln \cos \left(\varphi-g t / v_{c}\right)\right|_{0} ^{t_{\max }} \\
t_{\text {max }}=\frac{v_{c}}{g} \tan ^{-1}\left(v_{0} / v_{c}\right) \\
\varphi=\tan ^{-1}\left(v_{0} / k_{c}\right) \\
h=\frac{v_{c}^{2}}{g} \ln \left[\cos \left(\varphi-\tan ^{-1} \frac{v_{0}}{c}\right)\right] \\
\quad-\frac{v_{c}^{2}}{g} \ln [\cos (\varphi)] \\
=-\frac{v_{c}^{2}}{g} \ln \left[\cos \left(\tan ^{-1} \frac{v_{0}}{v_{c}}\right)\right] \\
=\frac{v_{c}^{2}}{2 g} \ln \left(1+\frac{v_{0}^{2}}{v_{c}^{2}}\right)
\end{gathered}
$$

As $A \rightarrow 0, v_{c} \rightarrow \infty, \frac{1}{3}(\ln (1+x) \sim x)$

$$
h \rightarrow \frac{v_{c}{ }^{2}}{2 g} \frac{v_{0}{ }^{2}}{v_{c}^{2}}=\frac{v_{0}{ }^{2}}{2 g}
$$

your name
2. Nancy has an iceboat of initial mass M_{0} which glides on a frictionless lake and has initial speed v_{0}. As she glides she picks up small penguins of mass m_{p}, who jump straight up then land on the boat as it passes by. There are ρ penguins per distance.
(a) (10 pts) What is Nancy's speed as a function of the distance traveled x ?
(b) (10 pts) What is Nancy's position as a function of time?
(c) (5 pts) What is Nancy's speed as a function of time?

$$
\begin{gathered}
\text { a) } \left.\begin{array}{c}
P_{\text {boat }}=\left(M_{0}+m_{p} \rho \cdot X\right) \cdot v \\
v=\frac{M_{0}}{M_{0}+m_{p} \rho X}
\end{array}\right) . v_{0}
\end{gathered}
$$

b)

$$
=m_{0} x+m_{p} \rho x^{2} / 2
$$

$$
\begin{aligned}
\frac{m_{p} \rho}{2} x^{2} & +\mu_{0} x-\mu_{0} v_{0} t=0 \\
x & =\frac{-M_{0}+\sqrt{\mu_{0}^{2}+2 m_{p} \rho M_{0} v_{0} t}}{m_{p} \rho} m_{0} \rho M_{0} v_{0}
\end{aligned}
$$

$$
\text { c) } v=\frac{d x}{d t}=\frac{1}{m_{p \rho}} \frac{m_{p} \rho M_{0} v_{0}}{\left(M_{0}^{2}+2 m_{\rho} \rho M_{0} v_{0} t\right)^{1 / 2}}
$$

$$
=\frac{\mu_{0} v_{0}}{\left(\mu_{0}^{2}+2 m_{p} \rho \mu_{0} v_{0} t\right)^{1 / 2}}
$$

